0000000000598777
AUTHOR
Piotr Garbaczewski
Levy flights and nonlocal quantum dynamics
We develop a fully fledged theory of quantum dynamical patterns of behavior that are nonlocally induced. To this end we generalize the standard Laplacian-based framework of the Schr\"{o}dinger picture quantum evolution to that employing nonlocal (pseudodifferential) operators. Special attention is paid to the Salpeter (here, $m\geq 0$) quasirelativistic equation and the evolution of various wave packets, in particular to their radial expansion in 3D. Foldy's synthesis of "covariant particle equations" is extended to encompass free Maxwell theory, which however is devoid of any "particle" content. Links with the photon wave mechanics are explored.
Cauchy flights in confining potentials
We analyze confining mechanisms for L\'evy flights evolving under an influence of external potentials. Given a stationary probability density function (pdf), we address the reverse engineering problem: design a jump-type stochastic process whose target pdf (eventually asymptotic) equals the preselected one. To this end, dynamically distinct jump-type processes can be employed. We demonstrate that one "targeted stochasticity" scenario involves Langevin systems with a symmetric stable noise. Another derives from the L\'evy-Schr\"odinger semigroup dynamics (closely linked with topologically induced super-diffusions), which has no standard Langevin representation. For computational and visualiz…
Fractional Laplacians in bounded domains: Killed, reflected, censored, and taboo Lévy flights.
The fractional Laplacian $(- \Delta)^{\alpha /2}$, $\alpha \in (0,2)$ has many equivalent (albeit formally different) realizations as a nonlocal generator of a family of $\alpha $-stable stochastic processes in $R^n$. On the other hand, if the process is to be restricted to a bounded domain, there are many inequivalent proposals for what a boundary-data respecting fractional Laplacian should actually be. This ambiguity holds true not only for each specific choice of the process behavior at the boundary (like e.g. absorbtion, reflection, conditioning or boundary taboos), but extends as well to its particular technical implementation (Dirchlet, Neumann, etc. problems). The inferred jump-type …
Levy flights in confining environments: Random paths and their statistics
We analyze a specific class of random systems that are driven by a symmetric L\'{e}vy stable noise. In view of the L\'{e}vy noise sensitivity to the confining "potential landscape" where jumps take place (in other words, to environmental inhomogeneities), the pertinent random motion asymptotically sets down at the Boltzmann-type equilibrium, represented by a probability density function (pdf) $\rho_*(x) \sim \exp [-\Phi (x)]$. Since there is no Langevin representation of the dynamics in question, our main goal here is to establish the appropriate path-wise description of the underlying jump-type process and next infer the $\rho (x,t)$ dynamics directly from the random paths statistics. A pr…
Ultrarelativistic bound states in the spherical well
We address an eigenvalue problem for the ultrarelativistic (Cauchy) operator $(-\Delta )^{1/2}$, whose action is restricted to functions that vanish beyond the interior of a unit sphere in three spatial dimensions. We provide high accuracy spectral datafor lowest eigenvalues and eigenfunctions of this infinite spherical well problem. Our focus is on radial and orbital shapes of eigenfunctions. The spectrum consists of an ordered set of strictly positive eigenvalues which naturally splits into non-overlapping, orbitally labelled $E_{(k,l)}$ series. For each orbital label $l=0,1,2,...$ the label $k =1,2,...$ enumerates consecutive $l$-th series eigenvalues. Each of them is $2l+1$-degenerate. …
Nonlocally-induced (quasirelativistic) bound states: Harmonic confinement and the finite well
Nonlocal Hamiltonian-type operators, like e.g. fractional and quasirelativistic, seem to be instrumental for a conceptual broadening of current quantum paradigms. However physically relevant properties of related quantum systems have not yet received due (and scientifically undisputable) coverage in the literature. In the present paper we address Schr\"{o}dinger-type eigenvalue problems for $H=T+V$, where a kinetic term $T=T_m$ is a quasirelativistic energy operator $T_m = \sqrt{-\hbar ^2c^2 \Delta + m^2c^4} - mc^2$ of mass $m\in (0,\infty)$ particle. A potential $V$ we assume to refer to the harmonic confinement or finite well of an arbitrary depth. We analyze spectral solutions of the per…
Killing (absorption) versus survival in random motion
We address diffusion processes in a bounded domain, while focusing on somewhat unexplored affinities between the presence of absorbing and/or inaccessible boundaries. For the Brownian motion (L\'{e}vy-stable cases are briefly mentioned) model-independent features are established, of the dynamical law that underlies the short time behavior of these random paths, whose overall life-time is predefined to be long. As a by-product, the limiting regime of a permanent trapping in a domain is obtained. We demonstrate that the adopted conditioning method, involving the so-called Bernstein transition function, works properly also in an unbounded domain, for stochastic processes with killing (Feynman-…
Lévy flights in an infinite potential well as a hypersingular Fredholm problem.
We study L\'evy flights {{with arbitrary index $0< \mu \leq 2$}} inside a potential well of infinite depth. Such problem appears in many physical systems ranging from stochastic interfaces to fracture dynamics and multifractality in disordered quantum systems. The major technical tool is a transformation of the eigenvalue problem for initial fractional Schr\"odinger equation into that for Fredholm integral equation with hypersingular kernel. The latter equation is then solved by means of expansion over the complete set of orthogonal functions in the domain $D$, reducing the problem to the spectrum of a matrix of infinite dimensions. The eigenvalues and eigenfunctions are then obtained numer…
Superharmonic double-well systems with zero-energy ground states: Relevance for diffusive relaxation scenarios
Relaxation properties (specifically time-rates) of the Smoluchowski diffusion process on a line, in a confining potential $ U(x) \sim x^m$, $m=2n \geq 2$, can be spectrally quantified by means of the affiliated Schr\"{o}dinger semigroup $\exp (-t\hat{H})$, $t\geq 0$. The inferred (dimensionally rescaled) motion generator $\hat{H}= - \Delta + {\cal{V}}(x)$ involves a potential function ${\cal{V}}(x)= ax^{2m-2} - bx^{m-2}$, $a=a(m), b=b(m) >0$, which for $m>2$ has a conspicuous higher degree (superharmonic) double-well form. For each value of $m>2$, $ \hat{H}$ has the zero-energy ground state eigenfunction $\rho _*^{1/2}(x)$, where $\rho _*(x) \sim \exp -[U(x)]$ stands for the Boltzmann equil…
Thermalization of Levy flights: Path-wise picture in 2D
We analyze two-dimensional (2D) random systems driven by a symmetric L\'{e}vy stable noise which, under the sole influence of external (force) potentials $\Phi (x) $, asymptotically set down at Boltzmann-type thermal equilibria. Such behavior is excluded within standard ramifications of the Langevin approach to L\'{e}vy flights. In the present paper we address the response of L\'{e}vy noise not to an external conservative force field, but directly to its potential $\Phi (x)$. We prescribe a priori the target pdf $\rho_*$ in the Boltzmann form $\sim \exp[- \Phi (x)]$ and next select the L\'evy noise of interest. Given suitable initial data, this allows to infer a reliable path-wise approxima…
Lévy flights and Lévy-Schrödinger semigroups
We analyze two different confining mechanisms for L\'{e}vy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Levy-Schroedinger semigroups which induce so-called topological Levy processes (Levy flights with locally modified jump rates in the master equation). Given a stationary probability function (pdf) associated with the Langevin-based fractional Fokker-Planck equation, we demonstrate that generically there exists a topological L\'{e}vy process with the very same invariant pdf and in the reverse.
Nonlocal random motions: The trapping problem
L\'evy stable (jump-type) processes are examples of intrinsically nonlocal random motions. This property becomes a serious obstacle if one attempts to model conditions under which a particular L\'evy process may be subject to physically implementable manipulations, whose ultimate goal is to confine the random motion in a spatially finite, possibly mesoscopic trap. We analyze thisissue for an exemplary case of the Cauchy process in a finiteinterval. Qualitatively, our observations extend to general jump-type processes that are driven by non-gaussian noises, classified by the integral part of the L\'evy-Khintchine formula.For clarity of arguments we discuss, as a reference model, the classic …
Fractional Laplacians and Levy flights in bounded domains
We address L\'{e}vy-stable stochastic processes in bounded domains, with a focus on a discrimination between inequivalent proposals for what a boundary data-respecting fractional Laplacian (and thence the induced random process) should actually be. Versions considered are: restricted Dirichlet, spectral Dirichlet and regional (censored) fractional Laplacians. The affiliated random processes comprise: killed, reflected and conditioned L\'{e}vy flights, in particular those with an infinite life-time. The related concept of quasi-stationary distributions is briefly mentioned.
Nonlocally-induced (fractional) bound states: Shape analysis in the infinite Cauchy well
Fractional (L\'{e}vy-type) operators are known to be spatially nonlocal. This becomes an issue if confronted with a priori imposed exterior Dirichlet boundary data. We address spectral properties of the prototype example of the Cauchy operator $(-\Delta )^{1/2}$ in the interval $D=(-1,1) \subset R$, with a focus on functional shapes of lowest eigenfunctions and their fall-off at the boundaries of $D$. New high accuracy formulas are deduced for approximate eigenfunctions. We analyze how their shape reproduction fidelity is correlated with the evaluation finesse of the corresponding eigenvalues.
Solving fractional Schroedinger-type spectral problems: Cauchy oscillator and Cauchy well
This paper is a direct offspring of Ref. [J. Math. Phys. 54, 072103, (2013)] where basic tenets of the nonlocally induced random and quantum dynamics were analyzed. A number of mentions was maid with respect to various inconsistencies and faulty statements omnipresent in the literature devoted to so-called fractional quantum mechanics spectral problems. Presently, we give a decisive computer-assisted proof, for an exemplary finite and ultimately infinite Cauchy well problem, that spectral solutions proposed so far were plainly wrong. As a constructive input, we provide an explicit spectral solution of the finite Cauchy well. The infinite well emerges as a limiting case in a sequence of deep…
Modular Schrödinger equation and dynamical duality.
We discuss quite surprising properties of the one-parameter family of modular (Auberson and Sabatier (1994)) nonlinear Schr\"{o}dinger equations. We develop a unified theoretical framework for this family. Special attention is paid to the emergent \it dual \rm time evolution scenarios which, albeit running in the \it real time \rm parameter of the pertinent nonlinear equation, in each considered case, may be mapped among each other by means of an "imaginary time" transformation (more seriously, an analytic continuation in time procedure).
Information Functionals and the Notion of (Un)Certainty: Random Matrix Theory - Inspired Case
Information functionals allow one to quantify the degree of randomness of a given probability distribution, either absolutely (through min/max entropy principles) or relative to a prescribed reference one. Our primary aim is to analyze the “minimum information” assumption, which is a classic concept (R. Balian, 1968) in the random matrix theory. We put special emphasis on generic level (eigenvalue) spacing distributions and the degree of their randomness, or alternatively — information/organization deficit.
Probabilistic whereabouts of the "quantum potential"
We review major appearances of the functional expression $\pm \Delta \rho ^{1/2}/ \rho ^{1/2}$ in the theory of diffusion-type processes and in quantum mechanically supported dynamical scenarios. Attention is paid to various manifestations of "pressure" terms and their meaning(s) in-there.
Dynamics of confined Levy flights in terms of (Levy) semigroups
The master equation for a probability density function (pdf) driven by L\'{e}vy noise, if conditioned to conform with the principle of detailed balance, admits a transformation to a contractive strongly continuous semigroup dynamics. Given a priori a functional form of the semigroup potential, we address the ground-state reconstruction problem for generic L\'{e}vy-stable semigroups, for {\em all} values of the stability index $\mu \in (0,2)$. That is known to resolve an invariant pdf for confined L\'{e}vy flights (e.g. the former jump-type process). Jeopardies of the procedure are discussed, with a focus on: (i) when an invariant pdf actually is an asymptotic one, (ii) subtleties of the pdf…
Electron spectra in double quantum wells of different shapes
We suggest a method for calculating electronic spectra in ordered and disordered semiconductor structures (superlattices) forming double quantum wells (QW). In our method, we represent the solution of Schr\"odinger equation for QW potential with the help of the solution of the corresponding diffusion equation. This is because the diffusion is the mechanism, which is primarily responsible for amorphization (disordering) of the QW structure, leading to so-called interface mixing. We show that the electron spectrum in such a structure depends on the shape of the quantum well, which, in turn, corresponds to an ordered or disordered structure. Namely, in a disordered substance, QW typically has …
Lévy flights in confining potentials.
We analyze confining mechanisms for L\'{e}vy flights. When they evolve in suitable external potentials their variance may exist and show signatures of a superdiffusive transport. Two classes of stochastic jump - type processes are considered: those driven by Langevin equation with L\'{e}vy noise and those, named by us topological L\'{e}vy processes (occurring in systems with topological complexity like folded polymers or complex networks and generically in inhomogeneous media), whose Langevin representation is unknown and possibly nonexistent. Our major finding is that both above classes of processes stay in affinity and may share common stationary (eventually asymptotic) probability densit…
Heavy-tailed targets and (ab)normal asymptotics in diffusive motion
We investigate temporal behavior of probability density functions (pdfs) of paradigmatic jump-type and continuous processes that, under confining regimes, share common heavy-tailed asymptotic (target) pdfs. Namely, we have shown that under suitable confinement conditions, the ordinary Fokker-Planck equation may generate non-Gaussian heavy-tailed pdfs (like e.g. Cauchy or more general L\'evy stable distribution) in its long time asymptotics. For diffusion-type processes, our main focus is on their transient regimes and specifically the crossover features, when initially infinite number of the pdf moments drops down to a few or none at all. The time-dependence of the variance (if in existence…
Thermalization of Random Motion in Weakly Confining Potentials
We show that in weakly confining conservative force fields, a subclass of diffusion-type (Smoluchowski) processes, admits a family of "heavy-tailed" non-Gaussian equilibrium probability density functions (pdfs), with none or a finite number of moments. These pdfs, in the standard Gibbs-Boltzmann form, can be also inferred directly from an extremum principle, set for Shannon entropy under a constraint that the mean value of the force potential has been a priori prescribed. That enforces the corresponding Lagrange multiplier to play the role of inverse temperature. Weak confining properties of the potentials are manifested in a thermodynamical peculiarity that thermal equilibria can be approa…
Ultrarelativistic (Cauchy) spectral problem in the infinite well
We analyze spectral properties of the ultrarelativistic (Cauchy) operator $|\Delta |^{1/2}$, provided its action is constrained exclusively to the interior of the interval $[-1,1] \subset R$. To this end both analytic and numerical methods are employed. New high-accuracy spectral data are obtained. A direct analytic proof is given that trigonometric functions $\cos(n\pi x/2)$ and $\sin(n\pi x)$, for integer $n$ are {\it not} the eigenfunctions of $|\Delta |_D^{1/2}$, $D=(-1,1)$. This clearly demonstrates that the traditional Fourier multiplier representation of $|\Delta |^{1/2}$ becomes defective, while passing from $R$ to a bounded spatial domain $D\subset R$.
Ultrarelativistic bound states in the shallow spherical well
We determine approximate eigenvalues and eigenfunctions shapes for bound states in the $3D$ shallow spherical ultrarelativistic well. Existence thresholds for the ground state and first excited states are identified, both in the purely radial and orbitally nontrivial cases. This contributes to an understanding of how energy may be stored or accumulated in the form of bound states of Schr\"odinger - type quantum systems that are devoid of any mass.
Indeterminacy relations in random dynamics
We analyze various uncertainty measures for spatial diffusion processes. In this manifestly non-quantum setting, we focus on the existence issue of complementary pairs whose joint dispersion measure has strictly positive lower bound.
Levy targeting and the principle of detailed balance
We investigate confining mechanisms for Lévy flights under premises of the principle of detailed balance. In this case, the master equation of the jump-type process admits a transformation to the Lévy-Schrödinger semigroup dynamics akin to a mapping of the Fokker-Planck equation into the generalized diffusion equation. This sets a correspondence between above two stochastic dynamical systems, within which we address a (stochastic) targeting problem for an arbitrary stability index μ ε (0,2) of symmetric Lévy drivers. Namely, given a probability density function, specify the semigroup potential, and thence the jump-type dynamics for which this PDF is actually a long-time asymptotic (target) …
Lévy processes in bounded domains: path-wise reflection scenarios and signatures of confinement
We discuss an impact of various (path-wise) reflection-from-the barrier scenarios upon confining properties of a paradigmatic family of symmetric $\alpha $-stable L\'{e}vy processes, whose permanent residence in a finite interval on a line is secured by a two-sided reflection. Depending on the specific reflection "mechanism", the inferred jump-type processes differ in their spectral and statistical characteristics, like e.g. relaxation properties, and functional shapes of invariant (equilibrium, or asymptotic near-equilibrium) probability density functions in the interval. The analysis is carried out in conjunction with attempts to give meaning to the notion of a reflecting L\'{e}vy process…
Information dynamics: Temporal behavior of uncertainty measures
We carry out a systematic study of uncertainty measures that are generic to dynamical processes of varied origins, provided they induce suitable continuous probability distributions. The major technical tool are the information theory methods and inequalities satisfied by Fisher and Shannon information measures. We focus on a compatibility of these inequalities with the prescribed (deterministic, random or quantum) temporal behavior of pertinent probability densities.
Trajectory Statistics of Confined L\'evy Flights and Boltzmann-type Equilibria
We analyze a specific class of random systems that are driven by a symmetric L\'{e}vy stable noise, where Langevin representation is absent. In view of the L\'{e}vy noise sensitivity to environmental inhomogeneities, the pertinent random motion asymptotically sets down at the Boltzmann-type equilibrium, represented by a probability density function (pdf) $\rho_*(x) \sim \exp [-\Phi (x)]$. Here, we infer pdf $\rho (x,t)$ based on numerical path-wise simulation of the underlying jump-type process. A priori given data are jump transition rates entering the master equation for $\rho (x,t)$ and its target pdf $\rho_*(x)$. To simulate the above processes, we construct a suitable modification of t…
Path-wise versus kinetic modeling for equilibrating non-Langevin jump-type processes
We discuss two independent methods of solution of a master equation whose biased jump transition rates account for long jumps of L\'{e}vy-stable type and nonetheless admit a Boltzmannian (thermal) equilibrium to arise in the large time asymptotics of a probability density function $\rho (x,t)$. Our main goal is to demonstrate a compatibility of a {\it direct} solution method (an explicit, albeit numerically assisted, integration of the master equation) with an {\it indirect} path-wise procedure, recently proposed in [Physica {\bf A 392}, 3485, (2013)] as a valid tool for a dynamical analysis of non-Langevin jump-type processes. The path-wise method heavily relies on an accumulation of large…
Brownian motion in trapping enclosures: Steep potential wells, bistable wells and false bistability of induced Feynman-Kac (well) potentials
We investigate signatures of convergence for a sequence of diffusion processes on a line, in conservative force fields stemming from superharmonic potentials $U(x)\sim x^m$, $m=2n \geq 2$. This is paralleled by a transformation of each $m$-th diffusion generator $L = D\Delta + b(x)\nabla $, and likewise the related Fokker-Planck operator $L^*= D\Delta - \nabla [b(x)\, \cdot]$, into the affiliated Schr\"{o}dinger one $\hat{H}= - D\Delta + {\cal{V}}(x)$. Upon a proper adjustment of operator domains, the dynamics is set by semigroups $\exp(tL)$, $\exp(tL_*)$ and $\exp(-t\hat{H})$, with $t \geq 0$. The Feynman-Kac integral kernel of $\exp(-t\hat{H})$ is the major building block of the relaxatio…
Levy flights in steep potential wells: Langevin modeling versus direct response to energy landscapes
We investigate the non-Langevin relative of the L\'{e}vy-driven Langevin random system, under an assumption that both systems share a common (asymptotic, stationary, steady-state) target pdf. The relaxation to equilibrium in the fractional Langevin-Fokker-Planck scenario results from an impact of confining conservative force fields on the random motion. A non-Langevin alternative has a built-in direct response of jump intensities to energy (potential) landscapes in which the process takes place. We revisit the problem of L\'{e}vy flights in superharmonic potential wells, with a focus on the extremally steep well regime, and address the issue of its (spectral) "closeness" to the L\'{e}vy jum…
L\'{e}vy flights in inhomogeneous environments
We study the long time asymptotics of probability density functions (pdfs) of L\'{e}vy flights in different confining potentials. For that we use two models: Langevin - driven and (L\'{e}vy - Schr\"odinger) semigroup - driven dynamics. It turns out that the semigroup modeling provides much stronger confining properties than the standard Langevin one. Since contractive semigroups set a link between L\'{e}vy flights and fractional (pseudo-differential) Hamiltonian systems, we can use the latter to control the long - time asymptotics of the pertinent pdfs. To do so, we need to impose suitable restrictions upon the Hamiltonian and its potential. That provides verifiable criteria for an invarian…
Information dynamics in quantum theory
Shannon entropy and Fisher information functionals are known to quantify certain information-theoretic properties of continuous probability distributions of various origins. We carry out a systematic study of these functionals, while assuming that the pertinent probability density has a quantum mechanical appearance $\rho \doteq |\psi |^2$, with $\psi \in L^2(R)$. Their behavior in time, due to the quantum Schr\"{o}dinger picture evolution-induced dynamics of $\rho (x,t)$ is investigated as well, with an emphasis on thermodynamical features of quantum motion.