0000000000599668

AUTHOR

Agnar Helgason

0000-0002-8545-3767

showing 2 related works from this author

The genetic structure of Norway

2020

AbstractThe aim of the present study was to describe the genetic structure of the Norwegian population using genotypes from 6369 unrelated individuals with detailed information about places of residence. Using standard single marker- and haplotype-based approaches, we report evidence of two regions with distinctive patterns of genetic variation, one in the far northeast, and another in the south of Norway, as indicated by fixation indices, haplotype sharing, homozygosity, and effective population size. We detect and quantify a component of Uralic Sami ancestry that is enriched in the North. On a finer scale, we find that rates of migration have been affected by topography like mountain ridg…

PopulationPopulationContext (language use)NorwegianArticleGene flowDanish03 medical and health sciencesEffective population sizeGenetic variationGeneticsHumansGenetic variationeducationGenetics (clinical)030304 developmental biology0303 health scienceseducation.field_of_studyPolymorphism GeneticNorwayEcology030305 genetics & hereditylanguage.human_languagePedigreeFixation (population genetics)GeographyHaplotypesGenetic structurelanguageGenetic markersVDP::Samfunnsvitenskap: 200
researchProduct

Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series

2019

Summary Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse …

MaleRange (biology)BiologíaBreeding horsesBreedingGenomeDomestication0302 clinical medicinePaleobiologíaComputingMilieux_MISCELLANEOUSHistory AncientPhylogenyhorses0303 health sciencesDiversityGenomeAncient DNAanimal breedingBiological EvolutionmuleshumanitiesManagementEuropeDomestication animalEquestrian civilizationsEthnologyFemalemanagementequestrian civilizationsExtinct lineagesAsia[SHS.ARCHEO]Humanities and Social Sciences/Archaeology and PrehistoryselectionMultiple allelesCaballosBiologyMulesArticleGeneral Biochemistry Genetics and Molecular Biologydiversity03 medical and health sciencesdomesticationCaballo de Przewalskiddc:570[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry Molecular Biology/Genomics [q-bio.GN]AnimalsGenetic variationHorsesDNA AncientDomesticationSelectionancient DNAInstitut für Biochemie und Biologie030304 developmental biologyAnimal breedingSeries (stratigraphy)Genetic diversityGenetic VariationEquidaeGenéticaextinct lineagesAncient DNAdomestication ; selection ; equestrian civilizations ; horses ; ancient DNA ; mules ; animal breeding ; extinct lineages ; management ; diversityAnálisisancient DNA ; domestication ; animal breeding ; horses ; mules ; extinct lineages ; selection ; diversity ; management ; equestrian civilizations030217 neurology & neurosurgery
researchProduct