0000000000600520

AUTHOR

Wolfgang R. Plaß

On-line commissioning of SHIPTRAP

Abstract The on-line commissioning of the Penning-trap mass spectrometer SHIPTRAP was successfully completed with a mass measurement of holmium and erbium radionuclides produced at SHIP. A large fraction of contaminant ions created in the stopping cell was identified to originate from the buffer-gas supply system. Using a liquid nitrogen cold trap they were reduced to a tolerable amount and mass measurements of Er 147 , Er 148 , and Ho 147 with relative uncertainties of about 1 × 1 0 − 6 were performed.

research product

Separation of atomic and molecular ions by ion mobility with an RF carpet

Gas-filled stopping cells are used at accelerator laboratories for the thermalization of high-energy radioactive ion beams. Common challenges of many stopping cells are a high molecular background of extracted ions and limitations of extraction efficiency due to space-charge effects. At the FRS Ion Catcher at GSI, a new technique for removal of ionized molecules prior to their extraction out of the stopping cell has been developed. This technique utilizes the RF carpet for the separation of atomic ions from molecular contaminant ions through their difference in ion mobility. Results from the successful implementation and test during an experiment with a 600~MeV/u $^{124}$Xe primary beam are…

research product

Multi-nucleon transfer reactions at ion catcher facilities : a new way to produce and study heavy neutron-rich nuclei

Abstract The production of very neutron-rich nuclides heavier than fission fragments is an ongoing experimental challenge. Multi-nucleon transfer reactions (MNT) have been suggested as a method to produce these nuclides. By thermalizing the reaction products in gas-filled stopping cells, we can deliver them as cooled high-quality beams to decay, laser and mass spectrometry experiments. High precision mass spectrometry will allow for the first time to universally and unambiguously identify the atomic and proton numbers of the ions produced in MNT reactions. In this way their ground and isomeric state properties can be studied in high-precision measurements. In experiments at IGISOL, Finland …

research product

Recent developments for high-precision mass measurements of the heaviest elements at SHIPTRAP

Abstract Atomic nuclei far from stability continue to challenge our understanding. For example, theoretical models have predicted an “island of stability” in the region of the superheavy elements due to the closure of spherical proton and neutron shells. Depending on the model, these are expected at Z = 114, 120 or even 126 and N = 172 or 184. Valuable information on the road to the island of stability is derived from high-precision mass measurements, which give direct access to binding energies of short-lived trans-uranium nuclei. Recently, direct mass measurements at SHIPTRAP have been extended to nobelium and lawrencium isotopes around the deformed shell gap N = 152. In order to further …

research product

Rate capability of a cryogenic stopping cell for uranium projectile fragments produced at 1000 MeV/u

At the Low-Energy Branch (LEB) of the Super-FRS at FAIR, projectile and fission fragments will be produced at relativistic energies, separated in-flight, energy-bunched, slowed down and thermalized in a cryogenic stopping cell (CSC) filled with ultra-pure He gas. The fragments are extracted from the stopping cell using a combination of DC and RF electric fields and gas flow. A prototype CSC for the LEB has been developed and successfully commissioned at the FRS Ion Catcher at GSI. Ionization of He buffer gas atoms during the stopping of energetic ions creates a region of high space charge in the stopping cell. The space charge decreases the extraction efficiency of stopping cells since the …

research product

Radioactive Beams for Image-Guided Particle Therapy : The BARB Experiment at GSI

Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…

research product

Opportunities for Fundamental Physics Research with Radioactive Molecules

Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…

research product

First spatial separation of a heavy ion isomeric beam with a multiple-reflection time-of-flight mass spectrometer

Physics letters / B 744, 137 - 141 (2015). doi:10.1016/j.physletb.2015.03.047

research product

Dawning of the N=32 shell closure seen through precision mass measurements of neutron-rich titanium isotopes

A precision mass investigation of the neutron-rich titanium isotopes 51 − 55 Ti was performed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N = 32 shell closure, and the overall uncertainties of the 52 − 55 Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N = 32 , narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N = 32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements a…

research product

A Novel Method for the Measurement of Half-Lives and Decay Branching Ratios of Exotic Nuclei

A novel method for simultaneous measurement of masses, Q-values, isomer excitation energies, half-lives and decay branching ratios of exotic nuclei has been demonstrated. The method includes first use of a stopping cell as an ion trap, combining containment of precursors and decay-recoils for variable durations in a cryogenic stopping cell (CSC), and afterwards the identification and counting of them by a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS). Feasibility has been established by recording the decay and growth of $^{216}$Po and $^{212}$Pb (alpha decay) and of $^{119m2}$Sb (t$_{1/2}$ = 850$\pm$90 ms) and $^{119g}$Sb (isomer transition), obtaining half-lives and bran…

research product

Mass and half-life measurements of neutron-deficient iodine isotopes

The European physical journal / A 56(5), 143 (2020). doi:10.1140/epja/s10050-020-00153-5

research product

Removal of molecular contamination in low-energy RIBs by the isolation-dissociation-isolation method

Nuclear instruments & methods in physics research / B 463, 324 - 326 (2020). doi:10.1016/j.nimb.2019.04.072

research product

Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

research product

Development and test of iron-free quadrupole lenses with high magnetic flux densities

Abstract Iron-free magnetic quadrupole lenses have been developed for the focusing of energetic bunched heavy-ion beams. These devices are operated in a pulsed mode and provide very strong magnetic fields. A magnetic flux density of more than 14 T has been reached in a 100 mm long quadrupole with a 20 mm wide aperture, which corresponds to a magnetic flux density of ∼1400 T/m. The pulse duration of the applied electric current is approximately 300 μs with a flat top of several μs. The calculated and measured field properties of the quadrupoles are presented. In a first test experiment with a fast-extracted 650 MeV/u 197 Au 79+ beam (bunch length ∼500 ns) at GSI the focusing properties could…

research product

Direct Mapping of Nuclear Shell Effects in the Heaviest Elements

Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number $Z=114,120$, or $126$ and neutron number $N=184$ has been substantiated by the recent synthesis of new elements up to $Z=118$. However the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at $N=152$.

research product

The science case of the FRS Ion Catcher for FAIR Phase-0

The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection…

research product

Experimental program of the Super-FRS Collaboration at FAIR and developments of related instrumentation

The physics program at the super-conducting fragment separator (Super-FRS) at FAIR, being operated in a multiple-stage, high-resolution spectrometer mode, is discussed. The Super-FRS will produce, separate and transport radioactive beams at high energies up to 1.5 AGeV, and it can be also used as a stand-alone experimental device together with ancillary detectors. Various combinations of the magnetic sections of the Super-FRS can be operated in dispersive, achromatic or dispersion-matched spectrometer ion-optical modes, which allow measurements of momentum distributions of secondary-reaction products with high resolution and precision. A number of unique experiments in atomic, nuclear and h…

research product

Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI

Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separati…

research product

Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line

Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1,000,000. For the $^{69}$As isotope, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only 10 events. For the $^{70}$Se isotope, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of $\delta$m/m = 4.0$\times 10^{-8}$, with less than 500 events. The masses of the $^{71}$Se and $^{71}$Br isotopes were measured…

research product

High-resolution, accurate multiple-reflection time-of-flight mass spectrometry for short-lived, exotic nuclei of a few events in their ground and low-lying isomeric states

Physical review / C covering nuclear physics 99(6), 064313 (2019). doi:10.1103/PhysRevC.99.064313

research product

Studying Gamow-Teller transitions and the assignment of isomeric and ground states at $N=50$

Direct mass measurements of neutron-deficient nuclides around the N=50 shell closure below $^{100}$Sn were performed at the FRS Ion Catcher (FRS-IC) at GSI, Germany. The nuclei were produced by projectile fragmentation of $^{124}$Xe, separated in the fragment separator FRS and delivered to the FRS-IC. The masses of 14 ground states and two isomers were measured with relative mass uncertainties down to 1×10−7 using the multiple-reflection time-of-flight mass spectrometer of the FRS-IC, including the first direct mass measurements of $^{98}$Cd and $^{97}$Rh. A new QEC=5437±67 keV was obtained for $^{98}$Cd, resulting in a summed Gamow-Teller (GT) strength for the five observed transitions (0+…

research product