0000000000601238
AUTHOR
Vincenza Milana
A symmetric Galerkin BEM for plate bending analysis
Abstract The Symmetric Galerkin Boundary Element Method is employed in thin plate bending analysis in accordance with the Love–Kirchhoff kinematical assumption. The equations are obtained through the stationary conditions of the total potential energy, written for a plate whose boundary is discretized in boundary elements. Since the matrix coefficients are made up as double integrals with high order singularities, a strategy is shown to compute these coefficients in closed form. Furthermore, in order to model the kinematical discontinuities and to weight the mechanical quantities along the boundary elements, the Lagrangian quadratic shape functions, rather than C 1 type (spline, Hermitian),…
Stress fields by the symmetric Galerkin boundary element method
The paper examines the stress state of a body with the discretized boundary embedded in the infinite domain subjected to layered or double-layered actions, such as forces and displacement discontinuities on the boundary, and to internal actions, such as body forces and thermic variations, in the ambit of the symmetric Galerkin boundary element method (SGBEM). The stress distributions due to internal actions (body forces and thermic variations) were computed by transforming the volume integrals into boundary integrals. The aim of the paper is to show the tension state in Ω∞ as a response to all the actions acting in Ω when this analysis concerns the crossing of the discretized boundary, thu…