0000000000609417

AUTHOR

Fabrizio Sarasini

Durability of Basalt/Hemp Hybrid Thermoplastic Composites

The Achilles heel of thermoplastic natural fibre composites is their limited durability. The environmental degradation of the mechanical properties of hemp and hemp/basalt hybrid-reinforced high-density polyethylene (HDPE) composites has been investigated with a special focus on the effects of water ageing and accelerated ageing, including hygrothermal and UV radiation. Modification of the matrix was carried out using a maleic anhydride high-density polyethylene copolymer (MAPE) as a compatibilizer. Hybridization of hemp fibres with basalt fibres and the incorporation of MAPE were found to significantly decrease the water uptake (up to 75%) and increase the retention of mechanical propertie…

research product

The effects of water absorption and salt fog exposure on agglomerated cork compressive response

The replacement of synthetic foams with agglomerated cork in sandwich composites can meet the increasing environmental concerns. Its peculiar morphology and chemical composition lead to outstanding dimensional recovery that endorsed a broad investigation of its compressive behavior. The knowledge of neat material response is fundamental to obtain a reliable design dataset, but it is necessary to consider all the environmental factors (water, moisture and sunlight) that significantly modify material mechanical properties. In view of this, the present work investigates the effect of distilled and seawater absorption and salt fog exposure on the compressive behavior of two agglomerated corks w…

research product

A systematic literature review on less common natural fibres and their biocomposites

Abstract Interest in utilization of renewable resources is increasing because of public's environmental awareness and economic considerations. Lignocellulosic fibres have already attracted growing attention as reinforcement of polymeric matrices instead of synthetic ones (mainly glass) from the academic and industrial fields. In addition to kenaf, hemp, sisal, flax and jute, which are the subject of extensive investigations for composite applications since the 1970s, in the last years several researchers suggested the use of less common natural fibres, due to their low cost and availability. This paper reviews the extraction methods, chemical, morphological, thermal and mechanical propertie…

research product

Environmentally Friendly Composites and Surface Treatments for Metal-to-Composite Hybrid Joints for Marine Application

In this study, the use of natural fibres (flax and basalt) in combination with a recyclable epoxy matrix based on cleavable amines is suggested for improving the sustainability of marine industry. In addition, a new and eco-friendly anodizing process based on tartaric sulfuric acid solution (TSA) and a pore widening step in a NaOH aqueous solution was carried out on aluminium alloy (AA5083) to evaluate its effect on the adhesion strength and damage tolerance after low velocity impact of co-cured adhesive joints with a basalt fibre reinforced and recyclable laminate. The durability in marine environment was simulated by exposing samples to salt-fog spray conditions over a period of 90 days. …

research product

Salt-fog spray aging of jute-basalt reinforced hybrid structures. Flexural and low velocity impact response

Abstract In this work, a study on the aging resistance of jute and jute-basalt interply hybrid laminates exposed to salt-fog is presented with the aim to investigate the possibility to enhance the durability of natural fiber reinforced composites for marine application by a ply-substitution approach. In particular, jute and basalt/jute reinforced composite plates were manufactured by vacuum assisted resin infusion in two different staking sequences (i.e., intercalated and sandwich-like basalt-jute) and aged under salt fog conditions. The effects of the accelerated aging at increasing times on the mechanical response of laminates were assessed in both quasi static (three point bending) and d…

research product