6533b827fe1ef96bd1285b75

RESEARCH PRODUCT

Durability of Basalt/Hemp Hybrid Thermoplastic Composites

Claudia SergiT. ScaliciFabrizio SarasiniVincenzo FioreJacopo TirillòMaria Carolina Seghini

subject

Polymer-matrix composites (PMCs)Materials scienceThermoplasticPolymers and Plasticspolymer-matrix composites; hybrid; environmental degradation; natural fibres; durability; basalt fibres; hemp fibresNatural Fibersenvironmental degradation02 engineering and technologyHemp fibers010402 general chemistrypolymer-matrix composites01 natural sciencesArticlelaw.inventionlcsh:QD241-441chemistry.chemical_compoundDifferential scanning calorimetrylcsh:Organic chemistryhemp fibreslawnatural fibresUltimate tensile strengthComposite materialCrystallizationchemistry.chemical_classificationPolymer-matrix compositehybridChemistry (all)Maleic anhydrideGeneral ChemistryPolyethylene021001 nanoscience & nanotechnologyDurabilityHybrid0104 chemical sciencesEnvironmental degradationSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryNatural fibre13. Climate actionBasalt fiber reinforced polymersdurabilityHigh-density polyethylenebasalt fibres0210 nano-technologyHemp fibreBasalt fibre

description

The Achilles heel of thermoplastic natural fibre composites is their limited durability. The environmental degradation of the mechanical properties of hemp and hemp/basalt hybrid-reinforced high-density polyethylene (HDPE) composites has been investigated with a special focus on the effects of water ageing and accelerated ageing, including hygrothermal and UV radiation. Modification of the matrix was carried out using a maleic anhydride high-density polyethylene copolymer (MAPE) as a compatibilizer. Hybridization of hemp fibres with basalt fibres and the incorporation of MAPE were found to significantly decrease the water uptake (up to 75%) and increase the retention of mechanical properties after accelerated ageing. Secondary crystallization phenomena occurring in the composites, as confirmed by differential scanning calorimetry (DSC) analysis, were able to counteract the severe combined effects of hygrothermal stress and UV radiation, with the exception of hemp-fibre composites where permanent damage to the fibres occurred, with 2% and 20% reduction in tensile strength and modulus, respectively, for a 30 wt % hemp fibre-reinforced HDPE.

10.3390/polym11040603http://dx.doi.org/10.3390/polym11040603