0000000000610394

AUTHOR

A. Riggio

showing 41 related works from this author

Study of the accretion torque during the 2014 outburst of the X-ray pulsar GRO J1744−28

2017

We present the spectral and timing analysis of the X-ray pulsar GRO J1744-28 during its 2014 outburst using data collected with the X-ray satellites Swift, INTEGRAL, Chandra, and XMM-Newton. We derived, by phase-connected timing analysis of the observed pulses, an updated set of the source ephemeris. We were also able to investigate the spin-up of the X-ray pulsar as a consequence of the accretion torque during the outburst. Relating the spin-up rate and the mass accretion rate as $\dot{\nu}\propto\dot{M}^{\beta}$, we fitted the pulse phase delays obtaining a value of $\beta=0.96(3)$. Combining the results from the source spin-up frequency derivative and the flux estimation, we constrained …

accretion accretion discAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsEphemeris01 natural sciencesstars: neutronQuadratic equationPulsar0103 physical sciencesTorque010303 astronomy & astrophysicsGroup delay and phase delayHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsneutron; X-rays: binaries; X-rays: individual: GRO J1744-28 [accretion accretion disc; stars]Static timing analysisAstronomy and AstrophysicsX-rays: binarieAccretion (astrophysics)Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-rays: individual: GRO J1744-28X-ray pulsarMonthly Notices of the Royal Astronomical Society
researchProduct

Evidence of a non-conservative mass transfer for XTE J0929-314

2017

Context. In 1998 the first accreting millisecond pulsar, SAX J1808.4-3658, was discovered and to date 18 systems showing coherent, high frequency (> 100 Hz) pulsations in low mass X-ray binaries are known. Since their discovery, this class of sources has shown interesting and sometimes puzzling behaviours. In particular, apart from a few exceptions, they are all transient with very long X-ray quiescent periods implying a quite low averaged mass accretion rate onto the neutron star. Among these sources, XTE J0929-314 has been detected in outburst just once in about 15 years of continuous monitoring of the X-ray sky. Aims. We aim to demonstrate that a conservative mass transfer in this sys…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesStars: individual: XTE J0929-314AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLuminosityPulsarMillisecond pulsar0103 physical sciencesX-rays: star010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsAstronomy and AstrophysicGalactic planeOrbital periodX-rays: binarieStars: neutronGalaxyNeutron starSpace and Planetary Scienceindividual: XTE J0929-314; Stars: neutron; X-rays: binaries; X-rays: stars; Astronomy and Astrophysics; Space and Planetary Science [Stars]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Timing of accreting millisecond pulsars

2008

We review recent results from the X-ray timing of accreting millisecond pulsars in LMXBs. This is the first time a timing analysis is performed on accreting millisecond pulsars, and for the first time we can obtain information on the behavior of a very fast pulsar subject to accretion torques. We find both spin-up and spin-down behaviors, from which, using available models for the accretion torques, we derive information on the mass accretion rate and magnetic field of the neutron star in these systems. We also report here the first measure of the orbital period derivative for an accreting millisecond pulsar, derived for SAX J1808.4-3658 over a timespan of more 7 years.

PhysicsAccretion and accretion disks Pulsars Neutron stars X-ray binaries Magnetic and electric fieldAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryStatic timing analysisAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicspolarization of starlightOrbital periodAccretion (astrophysics)Neutron starSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Galaxy AstrophysicsX-ray pulsarAIP Conference Proceedings
researchProduct

Localisation of gamma-ray bursts from the combined SpIRIT+HERMES-TP/SP nano-satellite constellation

2023

Multi-messenger observations of the transient sky to detect cosmic explosions and counterparts of gravitational wave mergers critically rely on orbiting wide-FoV telescopes to cover the wide range of wavelengths where atmospheric absorption and emission limit the use of ground facilities. Thanks to continuing technological improvements, miniaturised space instruments operating as distributed-aperture constellations are offering new capabilities for the study of high energy transients to complement ageing existing satellites. In this paper we characterise the performance of the upcoming joint SpIRIT + HERMES-TP/SP nano-satellite constellation for the localisation of high-energy transients th…

Gamma ray transient sourceHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceX-ray transient sourceSpace telescopeTime domain astronomyFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

Spectral analysis of the dipping LMXB system XB 1916-053

2019

Context: XB 1916-053 is a low mass X-ray binary system (LMXB) hosting a neutron star (NS) and showing periodic dips. The spectrum of the persistent emission was modeled with a blackbody component having a temperature between 1.31 and 1.67 keV and with a Comptonization component with an electron temperature of 9.4 keV and a photon index $\Gamma$ between 2.5 and 2.9. The presence of absorption features associated with highly ionized elements suggested the presence of partially ionized plasma in the system. Aims: In this work we performed a study of the spectrum of XB 1916-053, which aims to shed light on the nature of the seed photons that contribute to the Comptonization component. Methods: …

stars: individual: XB 1916-053Absorption spectroscopyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsX-rays: general01 natural sciencesSpectral lineformation identification Line neutron Stars Stars: individual: XB 1916-053 X-rays: binaries X-rays: generalX-rays: binariesstars: neutron0103 physical sciencesBlack-body radiationAbsorption (logic)010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstronomy and AstrophysicsNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureline: formationAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]line: identification
researchProduct

Discovery of a new accreting millisecond X-ray pulsar in the globular cluster NGC 2808

2016

We report on the discovery of coherent pulsations at a period of 2.9 ms from the X-ray transient MAXI J0911-655 in the globular cluster NGC 2808. We observed X-ray pulsations at a frequency of $\sim339.97$ Hz in three different observations of the source performed with XMM-Newton and NuSTAR during the source outburst. This newly discovered accreting millisecond pulsar is part of an ultra-compact binary system characterised by an orbital period of $44.3$ minutes and a projected semi-major axis of $\sim17.6$ lt-ms. Based on the mass function we estimate a minimum companion mass of 0.024 M$_{\odot}$, which assumes a neutron star mass of 1.4 M$_{\odot}$ and a maximum inclination angle of $75^{\…

X-rays: binaries pulsars: general stars: neutron accretion accretion disks binaries: generalMetallicityAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsWhite dwarfAstronomy and Astrophysicsbinaries pulsars: general stars: neutron accretion accretion disks binaries: general [X-rays]Orbital periodNeutron starSpace and Planetary ScienceGlobular clusterAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaX-ray pulsar
researchProduct

Study of the reflection spectrum of the LMXB 4U 1702-429

2016

The source 4U 1702-429 (Ara X-1) is a low-mass X-ray binary system hosting a neutron star. Albeit the source is quite bright ( $\sim10^{37}$ erg s$^{-1}$) its broadband spectrum has never been studied. Neither dips nor eclipses have been observed in the light curve suggesting that its inclination angle is smaller than 60$^{\circ}$.We analysed the broadband spectrum of 4U 1702-429 in the 0.3-60 keV energy range, using XMM-Newton and INTEGRAL data, to constrain its Compton reflection component if it is present. After excluding the three time intervals in which three type-I X-ray bursts occurred, we fitted the joint XMM-Newton and INTEGRAL spectra obtained from simultaneous observations. A bro…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineAccretion accretion diskSettore FIS/05 - Astronomia E AstrofisicaIonization0103 physical sciencesStars: individual: 4U 1702-429Emission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysicsindividual: 4U 1702-429; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Stars]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieAccretion (astrophysics)Stars: neutronNeutron starAbsorption edgeSpace and Planetary ScienceElectron temperatureAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A relativistically broadened iron line from an Accreting Millisecond Pulsar

2010

The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6km for a 1.4 M⊙ neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of c…

PhysicsrelativityAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars: pulsars: individual: SAX J1808.4-3658accretion accretion diskprofiles; relativity; stars: pulsars: individual: SAX J1808.4-3658; X-rays: binaries; Physics and Astronomy (all) [accretion accretion disks; line]X-rays: binarieNeutron starPhysics and Astronomy (all)Pulsarline: profileMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsLine (formation)Doppler broadening
researchProduct

The INTEGRAL view of the pulsating hard X-ray sky: from accreting and transitional millisecond pulsars to rotation-powered pulsars and magnetars

2020

arXiv:2012.01346v1

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesAstrophysicsMagnetarQuantitative Biology::OtherComputer Science::Digital Libraries01 natural sciencesNeutron starsX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarMillisecond pulsar0103 physical sciencesMagnetarsAccretion disks magnetars neutron stars pulsar X-rays:binaries X-rays:burstseducationX-rays: bursts010303 astronomy & astrophysicsPulsarsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_study010308 nuclear & particles physicsCrab PulsarAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and AstrophysicsAccretion (astrophysics)Neutron starSpace and Planetary ScienceAccretion disksSpin-upAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Time domain astronomy with the THESEUS satellite

2021

THESEUS is a medium size space mission of the European Space Agency, currently under evaluation for a possible launch in 2032. Its main objectives are to investigate the early Universe through the observation of gamma-ray bursts and to study the gravitational waves electromagnetic counterparts and neutrino events. On the other hand, its instruments, which include a wide field of view X-ray (0.3-5 keV) telescope based on lobster-eye focussing optics and a gamma-ray spectrometer with imaging capabilities in the 2-150 keV range, are also ideal for carrying out unprecedented studies in time domain astrophysics. In addition, the presence onboard of a 70 cm near infrared telescope will allow simu…

010504 meteorology & atmospheric sciencesmedia_common.quotation_subjectAstronomyAstrophysics::High Energy Astrophysical PhenomenaSocio-culturaleFOS: Physical sciencesX-ray sources01 natural scienceslaw.inventionTelescopeX-ray sourceSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesTime domain[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Variability010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesmedia_commonTime domain astronomyPhysicsSpectrometerGravitational waveX-rays surveysAstronomyAstronomy and AstrophysicsUniverseSpace and Planetary ScienceSatelliteNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsExperimental Astronomy
researchProduct

A possible cyclotron resonance scattering feature near 0.7 keV in X1822-371

2015

We analyse all available X-ray observations of X1822-371 made with XMM-Newton, Chandra, Suzaku and INTEGRAL satellites. The observations were not simultaneous. The Suzaku and INTEGRAL broad band energy coverage allows us to constrain the spectral shape of the continuum emission well. We use the model already proposed for this source, consisting of a Comptonised component absorbed by interstellar matter and partially absorbed by local neutral matter, and we added a Gaussian feature in absorption at $\sim 0.7$ keV. This addition significantly improves the fit and flattens the residuals between 0.6 and 0.8 keV. We interpret the Gaussian feature in absorption as a cyclotron resonant scattering …

Astrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsX-rays: generalLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaAccretion accretion diskAstrophysics::Solar and Stellar AstrophysicsAbsorption (logic)Continuum (set theory)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Stars: magnetic fieldStars: individual: X1822-371Astronomy and AstrophysicsRadiusAstronomy and AstrophysicX-rays: binarieInterstellar mediumNeutron starSpace and Planetary ScienceEddington luminositysymbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

New orbital ephemerides for the dipping source 4U 1323-619: Constraining the distance to the source

2016

4U 1323-619 is a low mass X-ray binary system that shows type I X-ray bursts and dips. The most accurate estimation of the orbital period is 2.941923(36) hrs and a distance from the source that is lower than 11 kpc has been proposed. We aim to obtain the orbital ephemeris, the orbital period of the system, as well as its derivative to compare the observed luminosity with that predicted by the theory of secular evolution. We took the advantage of about 26 years of X-ray data and grouped the selected observations when close in time. We folded the light curves and used the timing technique, obtaining 12 dip arrival times. We fit the delays of the dip arrival times both with a linear and a quad…

neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619 [stars]010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesLuminositySettore FIS/05 - Astronomia E Astrofisica0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)stars: neutron X-rays: binaries X-rays: stars ephemerides stars: individual: 4U 1323-619Astronomy and AstrophysicsLight curveOrbital periodGalaxyNeutron starSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsLow MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct

NuSTAR and NICER reveal IGR J17591-2342 as a new accreting millisecond X-ray pulsar

2018

We report the discovery by the Nuclear Spectroscopic Telescope Array (NuSTAR) and the Neutron Star Interior Composition Explorer (NICER) of the accreting millisecond X-ray pulsar IGR J17591-2342. Coherent X-ray pulsations around 527.4 Hz (1.9 ms) with a clear Doppler modulation were detected. This implies an orbital period of ∼8.8 h and a projected semi-major axis of ∼1.23 lt-s. With the binary mass function, we estimate a minimum companion mass of 0.42 M, obtained assuming a neutron star mass of 1.4[subscript ⊙] and an inclination angle lower than 60°, as suggested by the absence of eclipses or dips in the light curve of the source. The broad-band energy spectrum, obtained by combining NuS…

AccretionAstrophysics::High Energy Astrophysical Phenomenageneral [Pulsars]FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linelaw.inventionTelescopeX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsarlow-mass [Stars]lawstars: low-mass0103 physical sciencesStars: low-maAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Neutron Star Interior Composition Explorer010308 nuclear & particles physicsComputer Science::Information Retrievalaccretion disksneutron [Stars]Astronomy and AstrophysicsAstronomy and AstrophysicOrbital periodLight curveX-rays: binarieStars: neutronNeutron starPulsars: generalAccretion diskSpace and Planetary ScienceAccretion disksbinaries [X-rays]Astrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-ray pulsar
researchProduct

Indications of non-conservative mass-transfer in AMXPs

2019

Context. Since the discovery of the first Accreting Millisecond X-ray Pulsar SAX J1808.4-3658 in 1998, the family of these sources kept growing on. Currently, it counts 22 members. All AMXPs are transients with usually very long quiescence periods, implying that mass accretion rate in these systems is quite low and not constant. Moreover, for at least three sources, a non-conservative evolution was also proposed. Aims. Our purpose is to study the long term averaged mass-accretion rates in all the Accreting Millisecond X-ray Pulsars discovered so far, to investigate a non-conservative mass-transfer scenario. Methods. We calculated the expected mass-transfer rate under the hypothesis of a con…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)X-rays: starsAstrophysicsCompact star01 natural sciencesLuminositystars: neutronX-rays: binariesPulsarpulsars: general0103 physical sciencesX-rays: individuals: IGR J17498−2921X-rays: individuals: IGR J17498-2921010303 astronomy & astrophysicsX-rays: individuals: XTE J1814−338PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsX-rays: binarieX-rays: individuals: XTE J1814-338Radiation pressureSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Magnetic dipole
researchProduct

Spectral analysis of the low-mass X-ray pulsar 4U 1822-371: Reflection component in a high-inclination system

2021

Context. The X-ray source 4U 1822-371 is an eclipsing low-mass X-ray binary and X-ray pulsar, hosting a NS that shows periodic pulsations in the X-ray band with a period of 0.59 s. The inclination angle of the system is so high (80–85°) that in principle, it should be hard to observe both the direct thermal emission of the central object and the reflection component of the spectrum because they are hidden by the outer edge of the accretion disc. Despite the number of studies carried out on this source, many aspects such as the geometry of the system, its luminosity, and its spectral features are still debated. Aims. Assuming that the source accretes at the Eddington limit, the analysis perf…

High Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaContinuum (design consultancy)FOS: Physical sciencesAstronomy and AstrophysicsRadiusAstrophysics01 natural sciencesaccretion accretion disks stars: neutron stars: individual: 4U 1822-371 X-rays: binaries X-rays: general eclipsesLuminositysymbols.namesakeSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary Science0103 physical sciencesEddington luminosityReflection (physics)symbolsAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsX-ray pulsarEclipse
researchProduct

Pulsating in Unison at Optical and X-Ray Energies: Simultaneous High Time Resolution Observations of the Transitional Millisecond Pulsar PSR J1023+00…

2019

PSR J1023+0038 is the first millisecond pulsar discovered to pulsate in the visible band; such a detection took place when the pulsar was surrounded by an accretion disk and also showed X-ray pulsations. We report on the first high time resolution observational campaign of this transitional pulsar in the disk state, using simultaneous observations in the optical (TNG, NOT, TJO), X-ray (XMM-Newton, NuSTAR, NICER), infrared (GTC) and UV (Swift) bands. Optical and X-ray pulsations were detected simultaneously in the X-ray high intensity mode in which the source spends $\sim$ 70% of the time, and both disappeared in the low mode, indicating a common underlying physical mechanism. In addition, o…

AccretionAccretion disks-pulsars: Individual (psr j1023+0038)-stars: Neutron-X-rays: Binaries010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesSettore FIS/05 - Astronomia E AstrofisicaPulsarAccretion discMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstrophysics::Instrumentation and Methods for AstrophysicsX-rayAstronomy and AstrophysicsTime resolutionAccretion (astrophysics)Space and Planetary ScienceVisible bandAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaThe Astrophysical Journal
researchProduct

On the timing properties of SAX J1808.4-3658 during its 2015 outburst

2017

We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuStar observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin down at an average rate $\dot{\nu}_{\text{SD}}=1.5(2)\times 10^{-15}$ Hz s$^{-1}$. We also discuss possible corrections to the spin down rate accounting for mass accretion onto the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatibl…

Angular momentumAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLagrangian pointAstrophysicsCompact star01 natural sciencespulsars: individual: SAX J1808.4-3658Gravitationstars: neutronX-rays: binariesSettore FIS/05 - Astronomia E AstrofisicaPulsar0103 physical sciences010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsGravitational waveAstronomy and AstrophysicsOrbital periodaccretion accretion discs; stars: neutron; pulsars: individual: SAX J1808.4-3658; X-rays: binaries13. Climate actionSpace and Planetary ScienceQuadrupole:accretion accretion discAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Updated orbital ephemeris of the ADC source X 1822-371: a stable orbital expansion over 40 years

2019

The source X 1822-371 is an eclipsing compact binary system with a period close to 5.57 hr and an orbital period derivative $\dot{P}_{\rm orb}$ of 1.51(7)$\times 10^{-10}$ s s$^{-1}$. The very large value of $\dot{P}_{\rm orb}$ is compatible with a super-Eddington mass transfer rate from the companion star, as suggested by X-ray and optical data. The XMM-Newton observation taken in 2017 allows us to update the orbital ephemeris and verify whether the orbital period derivative has been stable over the last 40 yr. We added to the X-ray eclipse arrival times from 1977 to 2008 two new values obtained from the RXTE and XMM-Newton observations performed in 2011 and 2017, respectively. We estimate…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsDerivativeEphemeris01 natural sciencesEclipseeclipsesLuminosityOrb (astrology)stars: neutronX-rays: binariesSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpin (physics)ephemerides010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsstars: individual: X 1822-371Astronomy and AstrophysicsOrbital periodEphemerideOrbitSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The near-IR counterpart of IGR J17480-2446 in Terzan 5

2012

Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observ…

Astrophysics::High Energy Astrophysical PhenomenaPopulationFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsLuminositySettore FIS/05 - Astronomia E AstrofisicaPulsarpulsars: general pulsars: individual: IGR J17480-2446 binaries: close globular clusters: individual: Terzan 5Cluster (physics)Astrophysics::Solar and Stellar AstrophysicseducationStellar evolutionSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)education.field_of_studygeneral pulsars: individual: IGR J17480-2446 binaries: close globular clusters: individual: Terzan 5 [pulsars]Astronomy and AstrophysicsGalaxyAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceGlobular clusterAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Quantum gravity with THESEUS

2021

AbstractIn this paper we explore the possibility to search for a dispersion law for light propagation in vacuo with a sample of Gamma-Ray Bursts detected by the THESEUS satellite. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that (in a series expansion) depend on a given power of the ratio of the photon energy to the Planck energy. This ratio is as small as 10− 23 for photons in the soft γ −ray band (100 keV). The dominant effect is determined by the first significant term of this expansion. If the first order in this expansion is relevant, these theories imply a Lorentz Invaria…

CubeSatsSettore FIS/05 - Astronomia E AstrofisicaAll-sky monitorSpace and Planetary ScienceAstrophysics::High Energy Astrophysical PhenomenaX-raysQuantum gravityGravitational wave counterpartsAstronomy and AstrophysicsGamma-ray burstsNano-satellitesTemporal triangulationExperimental Astronomy
researchProduct

IGR J17329-2731: The birth of a symbiotic X-ray binary

2018

We report on the results of the multiwavelength campaign carried out after the discovery of the INTEGRAL transient IGR J17329-2731. The optical data collected with the SOAR telescope allowed us to identify the donor star in this system as a late M giant at a distance of 2.7$^{+3.4}_{-1.2}$ kpc. The data collected quasi-simultaneously with XMM-Newton and NuSTAR showed the presence of a modulation with a period of 6680$\pm$3 s in the X-ray light curves of the source. This unveils that the compact object hosted in this system is a slowly rotating neutron star. The broadband X-ray spectrum showed the presence of a strong absorption ($\gg$10$^{23}$ cm$^{-2}$) and prominent emission lines at 6.4 …

010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryFOS: Physical sciencesFluxAstrophysicsCompact star01 natural sciencesSpectral linelaw.inventionTelescopeSettore FIS/05 - Astronomia E Astrofisicalaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesastro-ph.HEHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsAstronomy and AstrophysicsAstronomy and AstrophysicLight curveX-rays: binarieNeutron starX-rays: individuals: IGR J17329-273113. Climate actionSpace and Planetary ScienceAstrophysics - High Energy Astrophysical Phenomena
researchProduct

A possible solution of the puzzling variation of the orbital period of MXB 1659-298

2017

MXB 1659-298 is a transient neutron star Low-Mass X-ray binary system that shows eclipses with a periodicity of 7.1 hr. The source went to outburst in August 2015 after 14 years of quiescence. We investigate the orbital properties of this source with a baseline of 40 years obtained combining the eight eclipse arrival times present in literature with 51 eclipse arrival times collected during the last two outbursts. A quadratic ephemeris does not fit the delays associated with the eclipse arrival times and the addition of a sinusoidal term with a period of $2.31 \pm 0.02$ yr is required. We infer a binary orbital period of $P=7.1161099(3)$ hr and an orbital period derivative of $\dot{P}=-8.5(…

Star (game theory)FOS: Physical sciencesX-rays: starsAstrophysicsEphemeris01 natural sciencesJovianstars: neutronSettore FIS/05 - Astronomia E Astrofisicastars: individual: MXB 1659-2980103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsBinary system010303 astronomy & astrophysicsEclipsePhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsbinaries: eclipsingAstronomyAstronomy and AstrophysicsCoupling (probability)Orbital periodX-rays: binarieNeutron stareclipsing; stars: individual: MXB 1659-298; stars: neutron; X-rays: binaries; X-rays: stars [ephemerides; binaries]Space and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsephemerideAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Discovery of 105 Hz coherent pulsations in the ultracompact binary IGR J16597-3704

2018

We report the discovery of X-ray pulsations at 105.2 Hz (9.5 ms) from the transient X-ray binary IGR J16597-3704 using NuSTAR and Swift. The source was discovered by INTEGRAL in the globular cluster NGC 6256 at a distance of 9.1 kpc. The X-ray pulsations show a clear Doppler modulation implying an orbital period of ~46 minutes and a projected semi-major axis of ~5 lt-ms, which makes IGR J16597-3704 an ultra-compact X-ray binary system. We estimated a minimum companion mass of 0.0065 solar masses, assuming a neutron star mass of 1.4 solar masses, and an inclination angle of <75 degrees (suggested by the absence of eclipses or dips in its light-curve). The broad-band energy spectrum of the…

PhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencessymbols.namesakeAccretion accretion diskSettore FIS/05 - Astronomia E Astrofisica0103 physical sciencesBinaries: generalAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Accretion (meteorology)010308 nuclear & particles physicsgeneral; Stars: neutron; X-rays: binaries; Astronomy and Astrophysics; Space and Planetary Science [Accretion accretion disks; Binaries]Astronomy and AstrophysicsAstronomy and AstrophysicLight curveOrbital periodX-rays: binarieStars: neutronNeutron starSpace and Planetary ScienceGlobular clustersymbolsElectron temperatureAstrophysics - High Energy Astrophysical PhenomenaDoppler effect
researchProduct

Reflection component in the Bright Atoll Source GX 9+9

2020

GX 9+9 (4U 1728-16) is a low mass X-ray binary (LMXB) source harboring a neutron star. Although it belongs to the subclass of the bright Atoll sources together with GX 9+1, GX 3+1, and GX 13+1, its broadband spectrum is poorly studied and apparently does not show reflection features in the spectrum. To constrain the continuum well and verify whether a relativistic smeared reflection component is present, we analyze the broadband spectrum of GX 9+9 using {\it BeppoSAX} and \textit{XMM-Newton} spectra covering the 0.3-40 keV energy band. We fit the spectrum adopting a model composed of a disk-blackbody plus a Comptonized component whose seed photons have a blackbody spectrum (Eastern Model). …

PhotonAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsColor temperature010502 geochemistry & geophysics01 natural sciencesSpectral lineX-rays: binariesstars: neutronAccretion accretion diskSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesBlack-body radiation010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion disksAstronomy and AstrophysicsX-rays: binarieAccretion (astrophysics)Neutron starSpace and Planetary ScienceElectron temperatureAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLow Mass[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]stars: individual: GX 9+9
researchProduct

A model to interpret pulse phase shifts in AMXPs: SAX J1808.4-3658 as a proof of concept

2011

Abstract: Observational evidences of erratic 1(st) harmonic pulse phase shifts in accreting millisecond X-ray pulsars pulse phase evolution was reported by several authors. This effect always go together with much more stable 2(nd) harmonics pulse phase delays. Different possible explanations of these phase shifts have been given in literature. But all these interpretations do not explain why the 2(nd) harmonic are more stable than the 1(st) harmonic. The explanation of such a behaviour is of fundamental importance in order to gain an insight on the NS rotational behaviour and to remove the still present interpretative ambiguity on the results of timing analysis. We propose a simple toy-mod…

PhysicsMillisecondstars: magnetic fieldPhase (waves)Static timing analysispulsars: individual: XTE J1807-294Computational physicsPulse (physics)stars: neutronTheoretical physicsSettore FIS/05 - Astronomia E AstrofisicaAmplitudePulsarpulsars: generalHarmonicsHarmonicX-ray: binariesAIP Conference Proceedings
researchProduct

Signature of the presence of a third body orbiting around XB 1916-053

2015

The ultra-compact dipping source \object{XB 1916-053} has an orbital period of close to 50 min and a companion star with a very low mass (less than 0.1 M$_{\odot}$). The orbital period derivative of the source was estimated to be $1.5(3) \times 10^{-11}$ s/s through analysing the delays associated with the dip arrival times obtained from observations spanning 25 years, from 1978 to 2002. The known orbital period derivative is extremely large and can be explained by invoking an extreme, non-conservative mass transfer rate that is not easily justifiable. We extended the analysed data from 1978 to 2014, by spanning 37 years, to verify whether a larger sample of data can be fitted with a quadra…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsElliptic orbitStar (game theory)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsQuadratic functionQuadratic form (statistics)Astronomy and AstrophysicOrbital periodEphemerideX-rays: binarieStars: neutronNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceStars: individual: XB 1916-053X-rays: starAstrophysics::Earth and Planetary AstrophysicsEccentricity (mathematics)Low MassAstrophysics - High Energy Astrophysical Phenomena
researchProduct

X-ray spectroscopy of the ADC source X1822-371 with Chandra and XMM-Newton

2012

The eclipsing low-mass X-ray binary X1822-371 is the prototype of the accretion disc corona (ADC) sources. We analyse two Chandra observations and one XMM-Newton observation to study the discrete features and their variation as a function of the orbital phase, deriving constraints on the temperature, density, and location of the plasma responsible for emission lines. The HETGS and XMM/Epic-pn observed X1822-371 for 140 and 50 ks, respectively. We extracted an averaged spectrum and five spectra from five selected orbital-phase intervals that are 0.04-0.25, 0.25-0.50, 0.50-0.75, 0.75-0.95, and, finally, 0.95-1.04; the orbital phase zero corresponds to the eclipse time. All spectra cover the e…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral lineidentification line: formation stars: individual: X1822-371 X-rays: binaries X-rays: general [line]Settore FIS/05 - Astronomia E Astrofisica0103 physical sciencesOptical depth (astrophysics)line: identification line: formation stars: individual: X1822-371 X-rays: binaries X-rays: generalEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLine (formation)High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsLine-of-sight010308 nuclear & particles physicsResonanceAstronomy and AstrophysicsRadiusCoronaSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

XMM-Newton detection of the 2.1 ms coherent pulsations from IGR J17379-3747

2018

We report on the detection of X-ray pulsations at 2.1 ms from the known X-ray burster IGR J17379-3747 using XMM-Newton. The coherent signal shows a clear Doppler modulation from which we estimate an orbital period of ~1.9 hours and a projected semi-major axis of ~8 lt-ms. Taking into account the lack of eclipses (inclination angle of < 75 deg) and assuming a neutron star mass of 1.4 Msun, we estimated a minimum companion star of ~0.06 Msun. Considerations on the probability distribution of the binary inclination angle make less likely the hypothesis of a main-sequence companion star. On the other hand, the close correspondence with the orbital parameters of the accreting millisecond puls…

Astrophysics::High Energy Astrophysical PhenomenaBrown dwarfFOS: Physical sciencesgeneral; stars: neutron; X-rays: binaries; accretion accretion disks [binaries]AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEphemeris01 natural sciencesstars: neutronSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsEmission spectrum010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsOrbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)accretion accretion disksAccretion (meteorology)010308 nuclear & particles physicsAstronomy and AstrophysicsOrbital periodX-rays: binarieNeutron starbinaries: generalSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Evidence of a non-conservative mass transfer in the ultra-compact X-ray source XB 1916-053

2020

The dipping source XB 1916-053 is a compact binary system with an orbital period of 50 min harboring a neutron star. Using ten new {\it Chandra} observations and one {\it Swift/XRT} observation, we are able to extend the baseline of the orbital ephemeris; this allows us to exclude some models that explain the dip arrival times. The Chandra observations provide a good plasma diagnostic of the ionized absorber and allow us to determine whether it is placed at the outer rim of the accretion disk or closer to the compact object. From the available observations we are able to obtain three new dip arrival times extending the baseline of the orbital ephemeris from 37 to 40 years. From the analysis…

stars: individual: XB 1916-053Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsCompact star01 natural sciencesLuminositystars: neutronX-rays: binariesaccretion0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsaccretion disksApsidal precessionAstronomy and AstrophysicsMass ratioOrbital periodRedshiftNeutron starSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Gravitational redshiftAstronomy & Astrophysics
researchProduct

Chandra X-ray spectroscopy of a clear dip in GX 13+1

2014

The source GX 13+1 is a persistent, bright Galactic X-ray binary hosting an accreting neutron star. It shows highly ionized absorption features, with a blueshift of $\sim$ 400 km s$^{-1}$ and an outflow-mass rate similar to the accretion rate. Many other X-ray sources exhibit warm absorption features, and they all show periodic dipping behavior at the same time. Recently, a dipping periodicity has also been determined for GX 13+1 using long-term X-ray folded light-curves, leading to a clear identification of one of such periodic dips in an archival Chandra observation. We give the first spectral characterization of the periodic dip of GX 13+1 found in this archival Chandra observation perfo…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)X-ray spectroscopyAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsOrbital periodbinaries radiation mechanisms: general stars: neutron atomic processes [X-rays]BlueshiftAccretion rateNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceBulgeIonizationWarm absorptionX-rays: binaries radiation mechanisms: general stars: neutron atomic processesAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Secular spin-down of the AMP XTE J1751-305

2011

Context. Of the 13 known accreting millisecond pulsars, only a few showed more than one outburst during the RXTE era. XTE J1751-305 showed, after the main outburst in 2002, other three dim outbursts. We report on the timing analysis of the latest one, occurred on October 8, 2009 and serendipitously observed from its very beginning by RXTE. Aims. The detection of the pulsation during more than one outburst permits to obtain a better constraint of the orbital parameters and their evolution as well as to track the secular spin frequency evolution of the source. Methods. Using the RXTE data of the last outburst of the AMP XTE J1751-305, we performed a timing analysis to improve the orbital para…

Orbital elementsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)Astrophysicsstars: neutron stars: magnetic field pulsars: general pulsars: individual:XTE J1751-305 X-rays: binariesNeutron starDipoleSettore FIS/05 - Astronomia E AstrofisicaPulsarSpace and Planetary ScienceMillisecond pulsarAstrophysics - High Energy Astrophysical PhenomenaMagnetic dipoleSpin-½neutron stars: magnetic field pulsars: general pulsars: individual:XTE J1751-305 X-rays: binaries [stars]
researchProduct

Discovery of periodic dips in the light curve of GX 13+1: the X-ray orbital ephemeris of the source

2014

The bright low-mass X-ray binary (LMXB) GX 13+1 is one of the most peculiar Galactic binary systems. A periodicity of 24.27 d with a formal statistical error of 0.03 d was observed in its power spectrum density obtained with RXTE All Sky Monitor (ASM) data spanning 14 years. Starting from a recent study, indicating GX 13+1 as a possible dipping source candidate, we systematically searched for periodic dips in the X-ray light curves of GX 13+1 from 1996 up to 2013 using RXTE/ASM, and MAXI data to determine for the first time the X-ray orbital ephemeris of GX 13+1. We searched for a periodic signal in the ASM and MAXI light curves, finding a common periodicity of 24.53 d. We folded the 1.3-5 …

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)InfraredEpoch (astronomy)media_common.quotation_subjectSpectral densityFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsLight curveEphemerisOrbital periodPeriodic functionSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceSkystars: neutron stars: individual: GX 13+1 X-rays: binaries X-rays: stars ephemeridesneutron stars: individual: GX 13+1 X-rays: binaries X-rays: stars ephemerides [stars]Astrophysics - High Energy Astrophysical Phenomenamedia_common
researchProduct

"Flora e fauna antartica di interesse biotecnologico: esperienze e future prospettive in Italia ed Argentina"

2017

In Antartide sono presenti estreme condizioni ambientali e, fra i viventi, alcuni batteri, recentemente descritti da studiosi italiani, aventi la caratteristica di produrre molecole antibiotico-simili utili a curare soggetti affetti da fibrosi cistica. Studi condotti da esperti argentini e di altri paesi hanno portato alla scoperta di comunità batteriche con grosso potenziale biotecnologico sfruttabile nell’industria alimentare, tessile, dei biocarburanti ed anche utili come degradatori di idrocarburi da usare in protocolli di ripristino di suoli contaminati; anche lieviti e virus antartici sono di interesse biotecnologico. In conclusione l’Antartide è una miniera ecosostenibile di risorse …

Settore BIO/18 - Geneticabatteri antarticiantibioticibiorisorse.Antartide; batteri antartici; antibiotici; biorisorse.Antartide
researchProduct

Orbital Evolution of an Accreting Millisecond Pulsar: Witnessing the Banquet of a Hidden Black Widow?

2007

We have performed a timing analysis of all the four X-ray outbursts from the accreting millisecond pulsar SAX J1808.4-3658 observed so far by the PCA on board RXTE. For each of the outbursts we derived the best-fit value of the time of ascending node passage. We find that these times follow a parabolic trend, which gives an orbital period derivative $\dot P_{\rm orb} = (3.40 \pm 0.18) \times 10^{-12}$ s/s, and a refined estimate of the orbital period, $P_{\rm orb} = 7249.156499 \pm 1.8 \times 10^{-5}$ s (reference epoch $T_0 = 50914.8099$ MJD). This derivative is positive, suggesting a degenerate or fully convective companion star, but is more than one order of magnitude higher than what is…

Settore FIS/05 - Astronomia E AstrofisicaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)Astrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesstars: magnetic fields stars: neutron pulsars: general pulsars: individual: SAX J1808.4-3658 X-rays: binariesAstrophysics::Earth and Planetary AstrophysicsAstrophysics
researchProduct

GrailQuest & HERMES: Hunting for Gravitational Wave Electromagnetic Counterparts and Probing Space-Time Quantum Foam

2021

GrailQuest (Gamma-ray Astronomy International Laboratory for Quantum Exploration of Space-Time) is an ambitious astrophysical mission concept that uses a fleet of small satellites whose main objective is to search for a dispersion law for light propagation in vacuo. Within Quantum Gravity theories, different models for space-time quantization predict relative discrepancies of the speed of photons w.r.t. the speed of light that depend on the ratio of the photon energy to the Planck energy. This ratio is as small as 1E-23 for photons in the gamma-ray band (100 keV). Therefore, to detect this effect, light must propagate over enormous distances and the experiment must have extraordinary sensit…

High Energy Astrophysical Phenomena (astro-ph.HE)High Energy Physics - Experiment (hep-ex)FOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaHigh Energy Physics - Experiment
researchProduct

The X-ray spectrum of the newly discovered accreting millisecond pulsar IGR J17511-3057

2010

We report on an XMM-Newton observation of the accreting millisecond pulsar, IGR J17511-3057. Pulsations at 244.8339512(1) Hz are observed with an RMS pulsed fraction of 14.4(3)%. A precise solution for the P_orb=12487.51(2)s binary system is derived. The measured mass function indicates a main sequence companion with a mass between 0.15 and 0.44 Msun. The XMM-Newton spectrum of the source can be modelled by at least three components, multicoloured disc emission, thermal emission from the NS surface and thermal Comptonization emission. Spectral fit of the XMM-Newton data and of the RXTE data, taken in a simultaneous temporal window, constrain the Comptonization parameters: the electron tempe…

High Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/05 - Astronomia E Astrofisicastars neutron X-rays binaries X-rays individual IGR J17511-3057Astrophysics::High Energy Astrophysical PhenomenaAstrophysics::Solar and Stellar AstrophysicsFOS: Physical sciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Science case study and scientific simulations for the enhanced X-ray Timing Polarimetry mission, eXTP

2022

The X-ray astronomy mission eXTP (enhanced X-ray Timing Polarimetry) is designed to study matter under extreme conditions of density, gravity and magnetism. Primary goals are the determination of the equation of state (EoS) of matter at supranuclear density, the physics in extremely strong magnetic fields, the study of accretion in strong-field gravity (SFG) regime. Primary targets include isolated and binary neutron stars, strong magneticfield systems like magnetars, and stellar-mass and supermassive black holes. In this paper we report about key observations and simulations with eXTP on the primary objectives involving accretion under SFG regimes and determination of NS-EoS.

X-raymethods and techniquesdense matterSettore FIS/05 - Astronomia E AstrofisicaaccretionNeutron starBlack HoleAstronomical instrumentation
researchProduct

A re-analysis of the NuSTAR and XMM-Newton broad-band spectrum of Ser~X-1

2017

Context: Ser X-1 is a well studied LMXB which clearly shows a broad iron line. Recently, Miller et al. (2103) have presented broad-band, high quality NuSTAR data of SerX-1.Using relativistically smeared self-consistent reflection models, they find a value of R_in close to 1.0 R_ISCO (corresponding to 6 R_g), and a low inclination angle, less than 10 deg. Aims: The aim of this paper is to probe to what extent the choice of reflection and continuum models (and uncertainties therein) can affect the conclusions about the disk parameters inferred from the reflection component. To this aim we re-analyze all the available public NuSTAR and XMM-Newton. Ser X-1 is a well studied source, its spectrum…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Resolving the Fe XXV triplet with Chandra in Centaurus X-3

2005

We present the results of a 45 ks Chandra observation of the high-mass X-ray binary Cen X-3 at orbital phases between 0.13 and 0.40 (in the eclipse post-egress phases). Here we concentrate on the study of discrete features in the energy spectrum at energies between 6 and 7 keV, that is, on the iron K alpha line region, using the High Energy Transmission Grating Spectrometer (HETGS) on board the Chandra satellite. We clearly see a K alpha neutral iron line at similar to 6.40 keV and were able to distinguish the three lines of the Fe xxv triplet at 6.61, 6.67, and 6.72 keV, with equivalent widths of 6, 9, and 5 eV, respectively. The equivalent width of the Ka neutral iron line is 13 eV, an or…

line : formationline : identificationpulsars : individual (Centaurus X-3)X-rays : binarieformation; line : identification; pulsars : individual (Centaurus X-3); X-rays : binaries; X-rays : general [line]X-rays : general
researchProduct

Broadband spectral analysis of MXB 1659-298 in its soft and hard state

2019

The X-ray transient eclipsing source MXB 1659-298 went in outburst in 1999 and 2015, respectively, during which it was observed by XMM-Newton, NuSTAR and Swift. Using these observations we studied the broadband spectrum of the source to constrain the continuum components and to verify the presence of a reflection component. We analysed the soft and hard state of the source, finding that the soft state can be modelled with a thermal component associated with the inner accretion disc plus a Comptonised component. A smeared reflection component and the presence of an ionised absorber are also requested in the best-fit model. On the other hand, the direct continuum emission in the hard state ca…

High Energy Astrophysical Phenomena (astro-ph.HE)X-rays: binariesstars: individual (MXB 1659-298)stars: neutronaccretionaccretion disksAstrophysics::High Energy Astrophysical PhenomenaAccretion Accretion disks Stars: individual (MXB 1659-298) Stars: neutron X-rays: binariesFOS: Physical sciences[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

X-ray bursts and burst oscillations from the slowly spinning X-ray pulsar IGR J17480-2446 (Terzan 5)

2011

The newly discovered 11-Hz accreting pulsar, IGR J17480-2446, located in the globular cluster Terzan 5, has shown several bursts with a recurrence time as short as a few minutes. The source shows the shortest recurrence time ever observed from a neutron star. Here we present a study of the morphological, spectral and temporal properties of 107 bursts observed by the Rossi X-ray Timing Explorer. The recurrence time and the fluence of the bursts clearly anticorrelate with the increase in the persistent X-ray flux. The ratio between the energy generated by the accretion of mass and that liberated during bursts indicates that helium is ignited in a hydrogen-rich layer. Therefore, we conclude th…

Settore FIS/05 - Astronomia E Astrofisicapulsars: individual: IGR J17480-2446 X-rays: binariesindividual: IGR J17480-2446 X-rays: binaries [pulsars]
researchProduct