0000000000611538

AUTHOR

Enrico Pasqualetto

showing 20 related works from this author

Universal infinitesimal Hilbertianity of sub-Riemannian manifolds

2019

We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations into the space of square-integrable sections of the horizontal bundle, which we obtain on all weighted sub-Finsler manifolds. As an intermediate tool, of independent interest, we show that any sub-Finsler distance can be monotonically approximated from below by Finsler ones. All the results are obtained in the general setting of possibly rank-varying structures.

Mathematics - Differential GeometryMetric Geometry (math.MG)Sobolev spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisRiemannin monistotdifferentiaaligeometriasub-Finsler manifoldMathematics - Metric GeometryDifferential Geometry (math.DG)infinitesimal hilbertianityFOS: MathematicsMathematics::Metric Geometrysub-Riemannian manifoldMathematics::Differential GeometrymonistotfunktionaalianalyysiMathematics::Symplectic Geometry53C23 46E35 53C17 55R25Analysis
researchProduct

A short proof of the infinitesimal Hilbertianity of the weighted Euclidean space

2020

We provide a quick proof of the following known result: the Sobolev space associated with the Euclidean space, endowed with the Euclidean distance and an arbitrary Radon measure, is Hilbert. Our new approach relies upon the properties of the Alberti-Marchese decomposability bundle. As a consequence of our arguments, we also prove that if the Sobolev norm is closable on compactly-supported smooth functions, then the reference measure is absolutely continuous with respect to the Lebesgue measure.

Mathematics::Functional AnalysisPure mathematicsLebesgue measureEuclidean spaceGeneral Mathematics010102 general mathematicsAbsolute continuity01 natural sciencesMeasure (mathematics)Functional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaEuclidean distanceSobolev spaceNorm (mathematics)0103 physical sciencesRadon measureFOS: Mathematics010307 mathematical physics0101 mathematicsfunktionaalianalyysi53C23 46E35 26B05MathematicsComptes Rendus. Mathématique
researchProduct

Sharp estimate on the inner distance in planar domains

2020

We show that the inner distance inside a bounded planar domain is at most the one-dimensional Hausdorff measure of the boundary of the domain. We prove this sharp result by establishing an improved Painlev\'e length estimate for connected sets and by using the metric removability of totally disconnected sets, proven by Kalmykov, Kovalev, and Rajala. We also give a totally disconnected example showing that for general sets the Painlev\'e length bound $\kappa(E) \le\pi \mathcal{H}^1(E)$ is sharp.

Pure mathematicsMathematics - Complex VariablesGeneral MathematicsBoundary (topology)accessible pointsMetric Geometry (math.MG)31A15Domain (mathematical analysis)inner distancePlanarMathematics - Metric GeometryPrimary 28A75. Secondary 31A15Bounded functionTotally disconnected spaceMetric (mathematics)FOS: Mathematics28A75Hausdorff measureComplex Variables (math.CV)Painlevé lengthMathematics
researchProduct

On the notion of parallel transport on RCD spaces

2019

We propose a general notion of parallel transport on RCD spaces, prove an unconditioned uniqueness result and existence under suitable assumptions on the space. peerReviewed

Pure mathematicsParallel transportparallel transportGeneral Mathematics010102 general mathematicsSpace (mathematics)metriset avaruudet01 natural sciencesfunktioteoriaRCD spacesSettore MAT/05 - Analisi MatematicaParallel transportMathematics::Metric GeometryUniqueness0101 mathematicsMathematicsRevista Matemática Iberoamericana
researchProduct

Infinitesimal Hilbertianity of Weighted Riemannian Manifolds

2018

AbstractThe main result of this paper is the following: anyweightedRiemannian manifold$(M,g,\unicode[STIX]{x1D707})$,i.e., a Riemannian manifold$(M,g)$endowed with a generic non-negative Radon measure$\unicode[STIX]{x1D707}$, isinfinitesimally Hilbertian, which means that its associated Sobolev space$W^{1,2}(M,g,\unicode[STIX]{x1D707})$is a Hilbert space.We actually prove a stronger result: the abstract tangent module (à la Gigli) associated with any weighted reversible Finsler manifold$(M,F,\unicode[STIX]{x1D707})$can be isometrically embedded into the space of all measurable sections of the tangent bundle of$M$that are$2$-integrable with respect to$\unicode[STIX]{x1D707}$.By following the…

Mathematics - Differential GeometryMathematics::Functional AnalysisPure mathematicsGeneral MathematicsInfinitesimal010102 general mathematicsRiemannian manifold01 natural sciencesSobolev spacedifferentiaaligeometriasymbols.namesakeDifferential Geometry (math.DG)0103 physical sciencesFOS: MathematicssymbolsMathematics::Metric Geometry53C23 46E35 58B20010307 mathematical physicsFinsler manifoldMathematics::Differential Geometry0101 mathematicsmonistotCarnot cyclefunktionaalianalyysiMathematics
researchProduct

Characterisation of upper gradients on the weighted Euclidean space and applications

2020

In the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.

Pure mathematicsEuclidean spaceApplied MathematicsMathematics::Analysis of PDEsContext (language use)Sobolev spaceLipschitz continuityFunctional Analysis (math.FA)46E35 53C23 26B05differentiaaligeometriaSobolev spaceMathematics - Functional AnalysisMathematics - Analysis of PDEsRadon measureEuclidean geometryFOS: MathematicsWeighted Euclidean spaceDecomposability bundlefunktionaalianalyysiEquivalence (measure theory)MathematicsAnalysis of PDEs (math.AP)
researchProduct

The Theory of Normed Modules

2020

This chapter is devoted to the study of the so-called normed modules over metric measure spaces. These represent a tool that has been introduced by Gigli in order to build up a differential structure on nonsmooth spaces. In a few words, an \(L^2({{\mathfrak {m}}})\)-normed \(L^\infty ({{\mathfrak {m}}})\)-module is a generalisation of the concept of ‘space of 2-integrable sections of some measurable bundle’; it is an algebraic module over the commutative ring \(L^\infty ({{\mathfrak {m}}})\) that is additionally endowed with a pointwise norm operator. This notion, its basic properties and some of its technical variants constitute the topics of Sect. 3.1.

PointwisePure mathematicsNorm (mathematics)Differential structureCommutative ringAlgebraic numberMeasure (mathematics)Mathematics
researchProduct

Indecomposable sets of finite perimeter in doubling metric measure spaces

2020

We study a measure-theoretic notion of connectedness for sets of finite perimeter in the setting of doubling metric measure spaces supporting a weak $(1,1)$-Poincar\'{e} inequality. The two main results we obtain are a decomposition theorem into indecomposable sets and a characterisation of extreme points in the space of BV functions. In both cases, the proof we propose requires an additional assumption on the space, which is called isotropicity and concerns the Hausdorff-type representation of the perimeter measure.

Pure mathematicsSocial connectednessvariaatiolaskentaSpace (mathematics)01 natural sciencesMeasure (mathematics)differentiaaligeometriaPerimeterMathematics - Analysis of PDEsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsExtreme pointRepresentation (mathematics)MathematicsApplied Mathematics010102 general mathematicsdifferential equationsMetric Geometry (math.MG)metriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional AnalysisMetric (mathematics)mittateoria010307 mathematical physicsvariation26B30 53C23Indecomposable moduleAnalysisAnalysis of PDEs (math.AP)Calculus of Variations and Partial Differential Equations
researchProduct

Quasi-Continuous Vector Fields on RCD Spaces

2021

In the existing language for tensor calculus on RCD spaces, tensor fields are only defined $\mathfrak {m}$ -a.e.. In this paper we introduce the concept of tensor field defined ‘2-capacity-a.e.’ and discuss in which sense Sobolev vector fields have a 2-capacity-a.e. uniquely defined quasi-continuous representative.

Quasi-continuityPure mathematics01 natural sciencesPotential theoryTensor fielddifferentiaaligeometria010104 statistics & probabilityRCD spacesSettore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsMathematicsFunctional analysisDifferential calculus; Quasi-continuity; RCD spaces010102 general mathematicsRCD spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisSobolev spaceDifferential calculusdifferential calculusVector fieldTensor calculusfunktionaalianalyysiquasi-continuityAnalysis
researchProduct

First-Order Calculus on Metric Measure Spaces

2020

In this chapter we develop a first-order differential structure on general metric measure spaces. First of all, the key notion of cotangent module is obtained by combining the Sobolev calculus (discussed in Chap. 2) with the theory of normed modules (described in Chap. 3). The elements of the cotangent module L2(T∗X), which are defined and studied in Sect. 4.1, provide a convenient abstraction of the concept of ‘1-form on a Riemannian manifold’.

Sobolev spaceMetric (mathematics)CalculusKey (cryptography)Trigonometric functionsDifferential structureRiemannian manifoldMathematics::Symplectic GeometryMeasure (mathematics)MathematicsAbstraction (mathematics)
researchProduct

Rectifiability of RCD(K,N) spaces via δ-splitting maps

2021

In this note we give simplified proofs of rectifiability of RCD(K,N) spaces as metric measure spaces and lower semicontinuity of the essential dimension, via -splitting maps. The arguments are inspired by the Cheeger-Colding theory for Ricci limits and rely on the second order differential calculus developed by Gigli and on the convergence and stability results by Ambrosio-Honda. peerReviewed

Pure mathematicsTangent coneOrder (ring theory)Differential calculusRCD spaceArticlesMathematical proofmetriset avaruudetMeasure (mathematics)matemaattinen analyysidifferentiaaligeometriaConvergence (routing)Metric (mathematics)Mathematics::Metric GeometryRectifiabilityEssential dimensionMathematicstangent cone
researchProduct

Differential of metric valued Sobolev maps

2020

We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove that our notion is consistent with Kirchheim's metric differential when the source is a Euclidean space, and with the abstract differential provided by the first author when the target is $\mathbb{R}$.

metric measure spacesPure mathematicsFunction spaces; Metric measure spaces; Sobolev spaces01 natural sciencesMetric measure spacesfunction spacesSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsTrigonometric functions0101 mathematicsMathematicsEuclidean space010102 general mathematicsTangentmetriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional AnalysisSobolev spaceMetric spaceSobolev spacesFunction spaces010307 mathematical physicsfunktionaalianalyysiMetric differentialAnalysisJournal of Functional Analysis
researchProduct

Differential structure associated to axiomatic Sobolev spaces

2020

The aim of this note is to explain in which sense an axiomatic Sobolev space over a general metric measure space (à la Gol’dshtein–Troyanov) induces – under suitable locality assumptions – a first-order differential structure. peerReviewed

cotangent moduleLocality of differentialsPure mathematicsGeneral MathematicsAxiomatic Sobolev spaceDifferential structureSpace (mathematics)01 natural sciencesMeasure (mathematics)Settore MAT/05 - Analisi MatematicaFOS: Mathematicsaxiomatic Sobolev space0101 mathematics46E35 51FxxdifferentiaalilaskentaCotangent moduleAxiomMathematicsAxiomatic Sobolev space; Cotangent module; Locality of differentials010102 general mathematicsLocalitymetriset avaruudetFunctional Analysis (math.FA)locality of differentialsSobolev spaceMathematics - Functional AnalysisMetric (mathematics)
researchProduct

Sobolev Calculus on Metric Measure Spaces

2020

Several different approaches to the theory of weakly differentiable functions over abstract metric measure spaces made their appearance in the literature throughout the last twenty years. Amongst them, we shall mainly follow the one (based upon the concept of test plan) that has been proposed by Ambrosio, Gigli and Savare. The whole Sect. 2.1 is devoted to the definition of such notion of Sobolev space W1, 2(X) and to its most important properties.

Sobolev spacePure mathematicsMetric (mathematics)medicineDifferentiable functionTest planmedicine.diseaseMeasure (mathematics)Calculus (medicine)Mathematics
researchProduct

Second-Order Calculus on RCD Spaces

2020

In this conclusive chapter we introduce the class of those metric measure spaces that satisfy the Riemannian curvature-dimension condition, briefly called RCD spaces, and we develop a thorough second-order differential calculus over these structures.

Class (set theory)Computer scienceMetric (mathematics)CalculusmedicineOrder (group theory)Differential calculusMathematics::Differential Geometrymedicine.diseaseMeasure (mathematics)Calculus (medicine)
researchProduct

Heat Flow on Metric Measure Spaces

2020

In order to develop a second-order differential calculus on spaces with curvature bounds we need to make use of the regularising effects of the heat flow, to which this chapter is dedicated.

Order (business)Metric (mathematics)Applied mathematicsDifferential calculusCurvatureMeasure (mathematics)Heat flowMathematics
researchProduct

Abstract and concrete tangent modules on Lipschitz differentiability spaces

2020

We construct an isometric embedding from Gigli's abstract tangent module into the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure, and give two equivalent conditions which characterize when the embedding is an isomorphism. Together with arguments from a recent article by Bate--Kangasniemi--Orponen, this equivalence is used to show that the ${\rm Lip}-{\rm lip}$ -type condition ${\rm lip} f\le C|Df|$ implies the existence of a Lipschitz differentiable structure, and moreover self-improves to ${\rm lip} f =|Df|$. We also provide a direct proof of a result by Gigli and the second author that, for a space with a strongly rectifiable decomposition, Gigli'…

Pure mathematicsMathematics::Functional AnalysisekvivalenssimatematiikkaApplied MathematicsGeneral MathematicsTangentMetric Geometry (math.MG)Space (mathematics)Lipschitz continuitymetriset avaruudetFunctional Analysis (math.FA)Sobolev spaceMathematics - Functional AnalysisMathematics - Metric GeometryFOS: MathematicsEmbedding53C23 46E35 49J52Mathematics::Metric GeometryDirect proofDifferentiable functionIsomorphismMathematics::Differential GeometryMathematicsMathematics
researchProduct

The metric-valued Lebesgue differentiation theorem in measure spaces and its applications

2021

We prove a version of the Lebesgue Differentiation Theorem for mappings that are defined on a measure space and take values into a metric space, with respect to the differentiation basis induced by a von Neumann lifting. As a consequence, we obtain a lifting theorem for the space of sections of a measurable Banach bundle and a disintegration theorem for vector measures whose target is a Banach space with the Radon-Nikod\'{y}m property.

Mathematics - Functional AnalysisMathematics::Functional AnalysisAlgebra and Number Theorymeasurable Banach bundleLebesgue differentiation theoremFOS: MathematicsRadon–Nikodým propertyBanachin avaruudetdisintegration of a measure28A15 28A51 46G15 18F15 46G10 46B22 28A50von Neumann liftingAnalysisFunctional Analysis (math.FA)
researchProduct

Rectifiability of the reduced boundary for sets of finite perimeter over RCD(K,N) spaces

2019

This paper is devoted to the study of sets of finite perimeter in RCD(K,N) metric measure spaces. Its aim is to complete the picture of the generalization of De Giorgi’s theorem within this framework. Starting from the results of Ambrosio et al. (2019) we obtain uniqueness of tangents and rectifiability for the reduced boundary of sets of finite perimeter. As an intermediate tool, of independent interest, we develop a Gauss–Green integration-by-parts formula tailored to this setting. These results are new and non-trivial even in the setting of Ricci limits. peerReviewed

Mathematics - Differential Geometryset of finite perimeterreduced boundaryrectifiabilityMetric Geometry (math.MG)RCD spacemetriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional AnalysisdifferentiaaligeometriaMathematics - Metric GeometryDifferential Geometry (math.DG)Gauss–Green formulaFOS: MathematicsMathematics::Metric Geometrytangent cone
researchProduct

Testing the Sobolev property with a single test plan

2020

We prove that in a vast class of metric measure spaces (namely, those whose associated Sobolev space is separable) the following property holds: a single test plan can be used to recover the minimal weak upper gradient of any Sobolev function. This means that, in order to identify which are the exceptional curves in the weak upper gradient inequality, it suffices to consider the negligible sets of a suitable Borel measure on curves, rather than the ones of the $p$-modulus. Moreover, on $\sf RCD$ spaces we can improve our result, showing that the test plan can be also chosen to be concentrated on an equi-Lipschitz family of curves.

differentiaaligeometriaMathematics - Functional AnalysisMathematics - Metric GeometryGeneral MathematicsFOS: MathematicsMetric Geometry (math.MG)RCD space53C23 46E35Sobolev spacetest planfunktionaalianalyysiComputer Science::DatabasesFunctional Analysis (math.FA)
researchProduct