6533b7ddfe1ef96bd12748a1
RESEARCH PRODUCT
Quasi-Continuous Vector Fields on RCD Spaces
Nicola GigliEnrico PasqualettoClément Debinsubject
Quasi-continuityPure mathematics01 natural sciencesPotential theoryTensor fielddifferentiaaligeometria010104 statistics & probabilityRCD spacesSettore MAT/05 - Analisi MatematicaFOS: Mathematics0101 mathematicsMathematicsFunctional analysisDifferential calculus; Quasi-continuity; RCD spaces010102 general mathematicsRCD spaceFunctional Analysis (math.FA)Mathematics - Functional AnalysisSobolev spaceDifferential calculusdifferential calculusVector fieldTensor calculusfunktionaalianalyysiquasi-continuityAnalysisdescription
In the existing language for tensor calculus on RCD spaces, tensor fields are only defined $\mathfrak {m}$ -a.e.. In this paper we introduce the concept of tensor field defined ‘2-capacity-a.e.’ and discuss in which sense Sobolev vector fields have a 2-capacity-a.e. uniquely defined quasi-continuous representative.
year | journal | country | edition | language |
---|---|---|---|---|
2021-01-01 |