0000000000611618

AUTHOR

Anne Ponchel

Interesterification of triglycerides with methyl acetate for biodiesel production using a cyclodextrin-derived SnO@γ-Al2O3 composite as heterogeneous catalyst

International audience; Particle morphology and surface properties of metal oxides are topics of great importance in the field of heterogeneous catalysis. Herein, we have developed a molecular-colloidal coassembly approach combined with an ultrasonic-assisted precipitation method to fabricate SnO@γ-Al2O3 composites with tuneable pore size and well-defined octahedral-shape crystal structure. The supramolecular assemblies formed between the randomly methylated β-cyclodextrin (RaMeβCD) and Pluronic F127 were employed as template to tailor the size and shape of γ-Al2O3 nanoparticles and direct their assembly almost exclusively on the surface of micrometer-sized SnO single …

research product

Robust Mesoporous CoMo/γ-Al2O3 Catalysts from Cyclodextrin-Based Supramolecular Assemblies for Hydrothermal Processing of Microalgae: Effect of the Preparation Method

Hydrothermal liquefaction (HTL) is a promising technology for the production of biocrude oil from microalgae. Although this catalyst-free technology is efficient under high-temperature and high-pressure conditions, the biocrude yield and quality can be further improved by using heterogeneous catalysts. The design of robust catalysts that preserve their performance under hydrothermal conditions will be therefore very important in the development of biorefinery technologies. In this work, we describe two different synthetic routes (i.e., impregnation and cyclodextrin-assisted one-pot colloidal approach), for the preparation in aqueous phase of six high surface area CoMo/γ-Al2O3 catalysts. Cat…

research product

Host–guest inclusion complexes between peracetylated β-cyclodextrin and diphenyl(4-phenylphenyl)phosphine : computational studies

PM3 and molecular dynamic calculations were performed upon the inclusion complexation of peracetylated β-cyclodextrin (Per-Ac-β-CD) with diphenyl(4-phenylphenyl)phosphine (DBP). Results show that the 4-phenylphenyl part of the DBP phosphine fits tightly in the cavity of the Per-Ac-β-CD, leading to the formation of stable inclusion complexes. Complexation energies indicate that the complex formed via the primary side of the Per-Ac-β-CD is more stable than that formed via the secondary side. Electrostatic potential mapping and frontier orbital analysis suggest that van der Waals interaction constitute a major driving force in the complexation of the DBP and Per-Ac-β-CD.

research product

Peracetylated β‐cyclodextrin as solubilizer of arylphosphines in supercritical carbon dioxide

Abstract Effect of peracetylated β-cyclodextrin on the solubility of diphenyl(4-phenylphenyl)phosphine in supercritical carbon dioxide medium has been investigated. As shown by gravimetric measurements, the presence of cyclodextrin (CD) (1 equivalent) allows to increase the solubility of phosphine (P) in supercritical carbon dioxide (scCO 2 ) (40 °C, 35.2 MPa, nominal system density 0.89 g/mL). This solubility enhancement was attributed to host–guest interactions in scCO 2 as the P was recovered in the form of an inclusion complex. Furthermore, a diffuse reflectance spectroscopy study on the samples recovered after the experiments and on various CD/P solid mixtures obtained by co-grinding i…

research product

Asymmetric hydrogenation of ethyl pyruvate over aqueous dispersed Pt nanoparticles stabilized by a cinchonidine-functionalized β-cyclodextrin

International audience; Cinchonidine-functionalized β-cyclodextrin was used as stabilizing agent for platinum nanoparticles dispersed in water, but also as chiral modifier for the asymmetric hydrogenation of ethyl pyruvate at 30 °C under 40 bar of hydrogen. This functionalized cyclodextrin allowed getting more stable, more catalytically active and also more enantioselective Pt nanoparticles compared to control catalytic systems. NMR and MALDI-MS analyses clearly showed the reduction of the vinyl group of the cinchonidine graft during the nanoparticles preparation. Under hydrogen pressure, the hydrogenation of the quinolinic moiety was also proven and can be responsible for the difficul…

research product