0000000000612187
AUTHOR
Alexandros Iosifidis
The effect of automated taxa identification errors on biological indices
In benthic macroinvertebrate biomonitoring systems, the target is to determine the status of ecosystems based on several biological indices. To increase cost-efficiency, computer-based taxa identification for image data has recently been developed. Taxa identification errors can, however, have strong effects on the indices and thus on the determination of the ecological status. In order to shift the biomonitoring process towards automated expert systems, we need a clear understanding on the bias caused by automation. In this paper, we examine eleven classification methods in the case of macroinvertebrate image data and show how their classification errors propagate into different biological…
Benchmark database for fine-grained image classification of benthic macroinvertebrates
Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categori…
Automatic image‐based identification and biomass estimation of invertebrates
Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. We describe a robot-enabled image-based identificat…
Automatic image-based identification and biomass estimation of invertebrates
1. Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. 2. We describe a robot-enabled image-based ident…
Computer Vision on X-ray Data in Industrial Production and Security Applications: A Comprehensive Survey
X-ray imaging technology has been used for decades in clinical tasks to reveal the internal condition of different organs, and in recent years, it has become more common in other areas such as industry, security, and geography. The recent development of computer vision and machine learning techniques has also made it easier to automatically process X-ray images and several machine learning-based object (anomaly) detection, classification, and segmentation methods have been recently employed in X-ray image analysis. Due to the high potential of deep learning in related image processing applications, it has been used in most of the studies. This survey reviews the recent research on using com…
Automatic social distance estimation for photographic studies: Performance evaluation, test benchmark, and algorithm
The social distancing regulations introduced to slow down the spread of COVID-19 virus directly affect a basic form of non-verbal communication, and there may be longer term impacts on human behavior and culture that remain to be analyzed in proxemics studies. To obtain quantitative results for such studies, large media and/or personal photo collections must be analyzed. Several social distance monitoring methods have been proposed for safety purposes, but they are not directly applicable to general photo collections with large variations in the imaging setup. In such studies, the interest shifts from safety to analyzing subtle differences in social distances. Currently, there is no suitabl…
Human experts vs. machines in taxa recognition
The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hier…