0000000000612189

AUTHOR

Moncef Gabbouj

The effect of automated taxa identification errors on biological indices

In benthic macroinvertebrate biomonitoring systems, the target is to determine the status of ecosystems based on several biological indices. To increase cost-efficiency, computer-based taxa identification for image data has recently been developed. Taxa identification errors can, however, have strong effects on the indices and thus on the determination of the ecological status. In order to shift the biomonitoring process towards automated expert systems, we need a clear understanding on the bias caused by automation. In this paper, we examine eleven classification methods in the case of macroinvertebrate image data and show how their classification errors propagate into different biological…

research product

Classification and retrieval on macroinvertebrate image databases

Aquatic ecosystems are continuously threatened by a growing number of human induced changes. Macroinvertebrate biomonitoring is particularly efficient in pinpointing the cause-effect structure between slow and subtle changes and their detrimental consequences in aquatic ecosystems. The greatest obstacle to implementing efficient biomonitoring is currently the cost-intensive human expert taxonomic identification of samples. While there is evidence that automated recognition techniques can match human taxa identification accuracy at greatly reduced costs, so far the development of automated identification techniques for aquatic organisms has been minimal. In this paper, we focus on advancing …

research product

Benchmark database for fine-grained image classification of benthic macroinvertebrates

Managing the water quality of freshwaters is a crucial task worldwide. One of the most used methods to biomonitor water quality is to sample benthic macroinvertebrate communities, in particular to examine the presence and proportion of certain species. This paper presents a benchmark database for automatic visual classification methods to evaluate their ability for distinguishing visually similar categories of aquatic macroinvertebrate taxa. We make publicly available a new database, containing 64 types of freshwater macroinvertebrates, ranging in number of images per category from 7 to 577. The database is divided into three datasets, varying in number of categories (64, 29, and 9 categori…

research product

Automatic image‐based identification and biomass estimation of invertebrates

Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. We describe a robot-enabled image-based identificat…

research product

Optimization on ports activation towards energy efficient data center networks

Nowadays, Internet of thing including network support (i.e. checking social media, sending emails, video conferencing) requires smart and efficient data centers to support these services. Hence, data centers become more important and must be able to respond to ever changing service requirements and application demands. However, data centers are classified as one of the largest consumers of energy in the world. Existing topologies such as ScalNet improves the data center scalability while leading to enormous amounts of energy consumption. In this paper, we present a new energy efficient algorithm for ScalNet called Green ScalNet. The proposed topology strikes a compromise between maximizing …

research product

Automatic image-based identification and biomass estimation of invertebrates

1. Understanding how biological communities respond to environmental changes is a key challenge in ecology and ecosystem management. The apparent decline of insect populations necessitates more biomonitoring but the time-consuming sorting and expert-based identification of taxa pose strong limitations on how many insect samples can be processed. In turn, this affects the scale of efforts to map and monitor invertebrate diversity altogether. Given recent advances in computer vision, we propose to enhance the standard human expert-based identification approach involving manual sorting and identification with an automatic image-based technology. 2. We describe a robot-enabled image-based ident…

research product

Evaluating the performance of artificial neural networks for the classification of freshwater benthic macroinvertebrates

Abstract Macroinvertebrates form an important functional component of aquatic ecosystems. Their ability to indicate various types of anthropogenic stressors is widely recognized which has made them an integral component of freshwater biomonitoring. The use of macroinvertebrates in biomonitoring is dependent on manual taxa identification which is currently a time-consuming and cost-intensive process conducted by highly trained taxonomical experts. Automated taxa identification of macroinvertebrates is a relatively recent research development. Previous studies have displayed great potential for solutions to this demanding data mining application. In this research we have a collection of 1350 …

research product

Human experts vs. machines in taxa recognition

The step of expert taxa recognition currently slows down the response time of many bioassessments. Shifting to quicker and cheaper state-of-the-art machine learning approaches is still met with expert scepticism towards the ability and logic of machines. In our study, we investigate both the differences in accuracy and in the identification logic of taxonomic experts and machines. We propose a systematic approach utilizing deep Convolutional Neural Nets with the transfer learning paradigm and extensively evaluate it over a multi-pose taxonomic dataset with hierarchical labels specifically created for this comparison. We also study the prediction accuracy on different ranks of taxonomic hier…

research product