Synthesis and optoelectronic properties of chemically modified bi-fluorenylidenes
The development of new light harvesting materials is a key issue for the progress of the research on organic & hybrid photovoltaics. Here, we report a new class of organic sensitizers based on the bi-fluorenylidene moiety as π-linker within the donor–π-linker–acceptor (D–π–A) scheme. The new dyes are endowed with electron donor and electron acceptor units at strategic positions in order to improve their electronic and light-harvesting properties. The comprehensive study of these compounds through the use of different experimental and theoretical techniques, provides an in-depth understanding of their electronic and photophysical properties, and reveal their interest as photovoltaic material…
Buckyballs
Buckyballs represent a new and fascinating molecular allotropic form of carbon that has received a lot of attention by the chemical community during the last two decades. The unabating interest on this singular family of highly strained carbon spheres has allowed the establishing of the fundamental chemical reactivity of these carbon cages and, therefore, a huge variety of fullerene derivatives involving [60] and [70]fullerenes, higher fullerenes, and endohedral fullerenes have been prepared. Much less is known, however, of the chemistry of the uncommon non-IPR fullerenes which currently represent a scientific curiosity and which could pave the way to a range of new fullerenes. In this revi…
ExTTF-Based Dyes Absorbing over the Whole Visible Spectrum
International audience; New push−pull dyes featuring π-extended tetrathiafulvalene (exTTF) as the donor group and tricyanofuran (TCF) as the acceptor group were synthesized and characterized. Their broad absorption covers the entire visible spectral range and enters the near-infrared region. Electrochemistry and theoretical calculations provided an understanding of these singular electronic properties. The new dyes are appealing candidates as light harvesters in photovoltaic devices.
Donor-π-acceptors containing the 10-(1,3-dithiol-2-ylidene)anthracene unit for dye-sensitized solar cells
Two donor-acceptor molecular tweezers incorporating the 10-(1,3-dithiol-2-ylidene)anthracene unit as donor group and two cyanoacrylic units as accepting/anchoring groups are reported as metal-free sensitizers for dye-sensitized solar cells. By changing the phenyl spacer with 3,4-ethylenedioxythiophene (EDOT) units, the absorption spectrum of the sensitizer is red-shifted with a corresponding increase in the molar absorptivity. Density functional calculations confirmed the intramolecular charge-transfer nature of the lowest-energy absorption bands. The new dyes are highly distorted from planarity and are bound to the TiO(2) surface through the two anchoring groups in a unidentate binding for…
Tuning the Electronic Properties of Nonplanar exTTF-Based Push–Pull Chromophores by Aryl Substitution
International audience; A new family ofπ-extended tetrathiafulvalene (exTTF) donor−acceptorchromophores has been synthesized by [2 + 2] cycloaddition of TCNE with exTTF-substituted alkynes and subsequent cycloreversion. X-ray data and theoretical calculations,performed at the B3LYP/6-31G**level, show that the new chromophores exhibit highlydistorted nonplanar molecular structures with largely twisted 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) units. The electronic and optical properties, investigated by UV/visspectroscopy and electrochemical measurements, are significantly modified when theTCBD acceptor unit is substituted with a donor phenyl group, which increases the twistingof the TCBD unit…