0000000000614651

AUTHOR

Marc Pirrotta

Prefolded Synthetic G-Quartets Display Enhanced Bioinspired Properties

International audience; A water-soluble template-assembled synthetic G-quartet (TASQ) based on the use of a macrocyclodecapeptide scaffold was designed to display stable intramolecular folds alone in solution. The preformation of the guanine quartet, demonstrated by NMR and CD investigations, results in enhanced peroxidase-type biocatalytic activities and improved quadruplex-interacting properties. Comparison of its DNAzyme-boosting properties with the ones of previously published TASQ revealed that, nowadays, it is the best DNAzyme-boosting agent.

research product

Visualization of RNA-Quadruplexes in Live Cells

Visualization of DNA and RNA quadruplex formation in human cells was demonstrated recently with different quadruplex-specific antibodies. Despite the significant interest in these immunodetection approaches, dynamic detection of quadruplex in live cells remains elusive. Here, we report on NaphthoTASQ (N-TASQ), a next-generation quadruplex ligand that acts as a multiphoton turn-on fluorescent probe. Single-step incubation of human and mouse cells with N-TASQ enables the direct detection of RNA-quadruplexes in untreated cells (no fixation, permeabilization or mounting steps), thus offering a unique, unbiased visualization of quadruplexes in live cells.

research product

Small-molecule affinity capture of DNA/RNA quadruplexes and their identification in vitro and in vivo through the G4RP protocol

International audience; Guanine-rich DNA and RNA sequences can fold into higher-order structures known as G-quadruplexes (or G4-DNA and G4-RNA, respectively). The prevalence of the G4 landscapes in the human genome, transcriptome and ncRNAome (non-coding RNA), collectively known as G4ome, is strongly suggestive of biological relevance at multiple levels (gene expression , replication). Small-molecules can be used to track G4s in living cells for the functional characterization of G4s in both normal and disease-associated changes in cell biology. Here, we describe biotinylated biomimetic ligands referred to as Bio-TASQ and their use as molecular tools that allow for isolating G4s through aff…

research product

Disclosing the actual efficiency of G-quadruplex-DNA–disrupting small molecules

AbstractThe quest for small molecules that avidly bind to G-quadruplex-DNA (G4-DNA, or G4), so called G4-ligands, has invigorated the G4 research field from its very inception. Massive efforts have been invested to i- screen or design G4-ligands, ii- evaluate their G4-interacting properties in vitro through a series of now widely accepted and routinely implemented assays, and iii- use them as unique chemical biology tools to interrogate cellular networks that might involve G4s. In sharp contrast, only uncoordinated efforts at developing small molecules aimed at destabilizing G4s have been invested to date, even though it is now recognized that such molecular tools would have tremendous appl…

research product

DNA structure-specific sensitization of a metalloporphyrin leads to an efficient in vitro quadruplex detection molecular tool

International audience; The search for convenient molecular probes for detecting DNA and RNA quadruplexes in vitro is marked by a rapid pace of progress, spurred on by the multiple roles these higher-order nucleic acid structures play in many genetic dysregulations. Here, we contribute to this search, reporting on a palladated porphyrin named Pd.TEGPy: its efficiency as quadruplex-selective fluorescent dye relies on a structural design that endows it with attractive supramolecular and electronic properties and makes it an efficient turn-on, quadruplex-selective fluorescent stain thanks to a DNA-mediated sensitization mechanism that ensures a high level of specificity.

research product