0000000000615878

AUTHOR

William H. Kinney

showing 5 related works from this author

Eternal hilltop inflation

2016

We consider eternal inflation in hilltop-type inflation models, favored by current data, in which the scalar field in inflation rolls off of a local maximum of the potential. Unlike chaotic or plateau-type inflation models, in hilltop inflation the region of field space which supports eternal inflation is finite, and the expansion rate $H_{EI}$ during eternal inflation is almost exactly the same as the expansion rate $H_*$ during slow roll inflation. Therefore, in any given Hubble volume, there is a finite and calculable expectation value for the lifetime of the "eternal" inflation phase, during which quantum flucutations dominate over classical field evolution. We show that despite this, i…

PhysicsInflationCosmology and Nongalactic Astrophysics (astro-ph.CO)Slow rollSpacetime010308 nuclear & particles physicsmedia_common.quotation_subjectSpace timeKeynesian economicsFOS: Physical sciencesAstronomy and AstrophysicsExpectation valueAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGeneral Relativity and Quantum CosmologyHubble volume0103 physical sciences010306 general physicsEternal inflationScalar fieldmedia_commonAstrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

Resurrection of large lepton number asymmetries from neutrino flavor oscillations

2016

We numerically solve the evolution equations of neutrino three-flavor density matrices, and show that, even if neutrino oscillations mix neutrino flavors, large lepton number asymmetries are still allowed in certain limits by Big Bang Nucleosynthesis (BBN).

PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics::Instrumentation and Detectors010308 nuclear & particles physicsHigh Energy Physics::LatticeAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyFOS: Physical sciences01 natural sciencesLepton numberNuclear physicsHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesis0103 physical sciencesMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino010306 general physicsNeutrino oscillationFlavorAstrophysics - Cosmology and Nongalactic AstrophysicsPhysical Review D
researchProduct

Slow roll in simple non-canonical inflation

2007

17 pages, 4 figures.-- ISI Article Identifier: 000245945000008.-- ArXiv pre-print available at: http://arxiv.org/abs/astro-ph/0701343

High Energy Physics - TheoryAstrofísicaField (physics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Kinetic termAstrophysicsAstrophysicsCurvature01 natural sciencesPower lawGeneral Relativity and Quantum CosmologyCosmological perturbation theory0103 physical sciencesStatistical physics010306 general physicsInflation (cosmology)PhysicsBasis (linear algebra)Slow roll010308 nuclear & particles physicsAstrophysics (astro-ph)HorizonSpectral densityFísicaAstronomy and AstrophysicsHigh Energy Physics - Theory (hep-th)K-inflationFlatnessPhysics of the early universe
researchProduct

Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology

2017

We show that, if they exist, lepton number asymmetries ($L_\alpha$) of neutrino flavors should be distinguished from the ones ($L_i$) of mass eigenstates, since Big Bang Nucleosynthesis (BBN) bounds on the flavor eigenstates cannot be directly applied to the mass eigenstates. Similarly, Cosmic Microwave Background (CMB) constraints on mass eigenstates do not directly constrain flavor asymmetries. Due to the difference of mass and flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much stronger than conventional expectation, but not uniquely determined unless at least the asymmetry of the heaviest neutrino is well constrained. Cosmological constrain…

Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)media_common.quotation_subjectHigh Energy Physics::LatticeCosmic microwave backgroundCosmic background radiationFOS: Physical scienceslcsh:AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAsymmetryCosmologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesislcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Eigenvalues and eigenvectorsmedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLepton numberHigh Energy Physics - Phenomenologylcsh:QC770-798High Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Phantom Dirac-Born-Infeld dark energy

2017

Motivated by the apparent discrepancy between Cosmic Microwave Background measurements of the Hubble constant and measurements from Type-Ia supernovae, we construct a model for Dark Energy with equation of state $w = p / ��< -1$, violating the Null Energy Condition. Naive canonical models of so-called "Phantom" Dark Energy require a negative scalar kinetic term, resulting in a Hamiltonian unbounded from below and associated vacuum instability. We construct a scalar field model for Dark Energy with $w < -1$, which nonetheless has a Hamiltonian bounded from below in the comoving reference frame, {\it i.e.} in the rest frame of the fluid. We demonstrate that the solution is a cosmologica…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsKinetic termRest frame01 natural sciencesGeneral Relativity and Quantum Cosmologysymbols.namesake0103 physical sciencesAttractorsymbolsEnergy conditionDark energyHamiltonian (quantum mechanics)010303 astronomy & astrophysicsScalar fieldAstrophysics - Cosmology and Nongalactic AstrophysicsMathematical physicsHubble's lawPhysical Review D
researchProduct