6533b858fe1ef96bd12b6e08
RESEARCH PRODUCT
Flavor versus mass eigenstates in neutrino asymmetries: implications for cosmology
Wan-il ParkWan-il ParkWilliam H. KinneyGabriela Barenboimsubject
Particle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics and Astronomy (miscellaneous)media_common.quotation_subjectHigh Energy Physics::LatticeCosmic microwave backgroundCosmic background radiationFOS: Physical scienceslcsh:AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAsymmetryCosmologyHigh Energy Physics - Phenomenology (hep-ph)Big Bang nucleosynthesislcsh:QB460-4660103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsEngineering (miscellaneous)Eigenvalues and eigenvectorsmedia_commonPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLepton numberHigh Energy Physics - Phenomenologylcsh:QC770-798High Energy Physics::ExperimentNeutrinoAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
We show that, if they exist, lepton number asymmetries ($L_\alpha$) of neutrino flavors should be distinguished from the ones ($L_i$) of mass eigenstates, since Big Bang Nucleosynthesis (BBN) bounds on the flavor eigenstates cannot be directly applied to the mass eigenstates. Similarly, Cosmic Microwave Background (CMB) constraints on mass eigenstates do not directly constrain flavor asymmetries. Due to the difference of mass and flavor eigenstates, the cosmological constraint on the asymmetries of neutrino flavors can be much stronger than conventional expectation, but not uniquely determined unless at least the asymmetry of the heaviest neutrino is well constrained. Cosmological constraint on $L_i$ for a specific case is presented as an illustration.
year | journal | country | edition | language |
---|---|---|---|---|
2017-09-07 |