0000000000623957

AUTHOR

Hans-christen Hansson

showing 7 related works from this author

General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano …

2011

In this paper we describe and summarize the main achievements of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). EUCAARI started on 1 January 2007 and ended on 31 December 2010 leaving a rich legacy including: (a) a comprehensive database with a year of observations of the physical, chemical and optical properties of aerosol particles over Europe, (b) comprehensive aerosol measurements in four developing countries, (c) a database of airborne measurements of aerosols and clouds over Europe during May 2008, (d) comprehensive modeling tools to study aerosol processes fron nano to global scale and their effects on climate and air quality. In addition a new Pan…

Atmospheric ScienceEuropean aerosol010504 meteorology & atmospheric sciencesaerosolAerosol radiative forcingClimateclouds010501 environmental sciencesAtmospheric sciences01 natural scienceslcsh:Chemistry/dk/atira/pure/sustainabledevelopmentgoals/climate_actionAerosol cloud11. SustainabilitySDG 13 - Climate Actionddc:550particle propertiesEnvironmental policysaturation vapor-pressureschemical-transport modelMiljövetenskapair qualitylcsh:QC1-999General Circulation Model/dk/atira/pure/subjectarea/asjc/1900/1902EUCAARIEELS - Earth Environmental and Life SciencesION-INDUCED NUCLEATIONChemical transport modelMeteorologyEarth & EnvironmentEnergy / Geological Survey NetherlandsSIMULATION CHAMBER SAPHIRnuclei number concentrationSECONDARY ORGANIC AEROSOLpure component propertiesAir quality indexEnvironmental quality0105 earth and related environmental sciencesPARTICLE FORMATION EVENTSAtmosphärische Spurenstoffe[CHIM.CATA]Chemical Sciences/CatalysisCAS - Climate Air and Sustainability[SDE.ES]Environmental Sciences/Environmental and SocietyFalconAerosollcsh:QD1-99913. Climate actionmixed-phase cloudsEnvironmental scienceatmospheric sulfuric-acidEnvironmental Scienceslcsh:Physics
researchProduct

A new method to measure the size distribution of insoluble submicron particles in water

1994

Abstract In the atmosphere, cloud and fog droplets usually contain insoluble material. The role of these insoluble particles is still unknown today, and is of interest to study. To determine the size distribution and number concentration of these particles in water, different techniques are available. The instrumentation, however, to measure nanometer-sized particles down to 50 nm diameter is not known. A new instrument, the Liquid Tandem Differential Mobility Analyser (LTDMA), was developed to measure size distributions of insoluble particles in water in the size range 50–300 nm in diameter. The new method is based on nebulising, e.g. cloud water and forming a residue aerosol consisting of…

Fluid Flow and Transfer ProcessesAtmospheric ScienceEnvironmental EngineeringTandemChemistryMechanical EngineeringAnalyserDispersityAnalytical chemistryMineralogyCloud watercomplex mixturesPollutionWater sampleAerosolField campaignJournal of Aerosol Science
researchProduct

Phase partitioning of aerosol particles in clouds at Kleiner Feldberg

1994

The partitioning of aerosol particles between cloud droplets and interstitial air by number and volume was determined both in terms of an integral value and as a function of size for clouds on Mt. Kleiner Feldberg (825 m asl), in the Taunus Mountains north-west of Frankfurt am Main, Germany. Differences in the integral values and the size dependent partitioning between two periods during the campaign were observed. Higher number and volume concentrations of aerosol particles in the accumulation mode were observed during Period II compared to Period I. In Period I on average 87 ± 11% (±one standard deviation) and 73 ± 7% of the accumulation mode volume and number were incorporated into cloud…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric Science010504 meteorology & atmospheric sciencesChemistrySize dependentNucleation010501 environmental sciencesEntrainment (meteorology)Atmospheric sciences01 natural sciencesStandard deviationAerosolVolume (thermodynamics)13. Climate actionPhase (matter)Environmental ChemistryScavengingComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesJournal of Atmospheric Chemistry
researchProduct

A new method for measurements of insoluble submicron particles in water

1991

Abstract A new method was developed to determine the size distribution of insoluble particles in e.g., fog water in the particle size range 50 nm p nm. First the water was nebulized and than the droplets dried to form residual aerosol particles. Using a Tandem Differential Mobility Analyser (TDMA), soluble and insoluble particles were separated. The system was calibrated with monodisperse latex particles to determine the loss factor for insoluble particles.

Fluid Flow and Transfer ProcessesAtmospheric ScienceRange (particle radiation)Environmental EngineeringMaterials scienceMechanical EngineeringLoss factorDispersityAnalytical chemistryParticle sizePollutionAerosolJournal of Aerosol Science
researchProduct

Perspectives on aerosol deposition to natural surfaces: interactions between aerosol residence times, removal processes, the biosphere and global env…

1990

Abstract This paper summarizes the state-of-the-art and the research needs in the areas of aerosol residence-time assessments, deposition modelling, and understanding of aerosols in biogeochemistry. Research needs are emphasized from a systems perspective of global environmental change. Although fundamental quantitative knowledge is lacking, some qualitative linkages between source strengths, residence times, removal processes and the biosphere can be identified. It turns out that not only are the respective areas as such challenged by new problems, superimposed on the fairly well established conventional ones, but these areas also face mutually operating sets of feedbacks between residence…

Fluid Flow and Transfer ProcessesAtmospheric ScienceEnvironmental EngineeringMeteorologyEnvironmental changeMechanical EngineeringEarth scienceAir pollutionBiosphereBiogeochemistryEcological systems theorymedicine.disease_causePollutionAerosolmedicineEnvironmental scienceResidenceNatural resource managementJournal of Aerosol Science
researchProduct

Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

2014

Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from…

Atmospheric Science010504 meteorology & atmospheric sciencesParticle numbergeneral-circulation modelmixing state010501 environmental sciencesEnvironmentclimate modelblack carbonAtmospheric sciences01 natural sciencesTropospherelcsh:ChemistryZeppelinobservatorietUrban Developmentddc:550Cloud condensation nucleiBuilt Environmentnumber size distributionsPhysics::Atmospheric and Oceanic Physics0105 earth and related environmental sciencesMicrophysicsparticle formationEarth / EnvironmentalCloud physicsatmospheric aerosolCAS - Climate Air and SustainabilityRadiative forcinglcsh:QC1-999Aerosolcloud condensation nucleimarine boundary-layerlcsh:QD1-99913. Climate actionClimatologyEnvironmental scienceClimate modelELSS - Earth Life and Social Sciencesoff-line modellcsh:Physics
researchProduct

The Kleiner Feldberg Cloud Experiment 1990. An overview

1994

An overview is given of the Kleiner Feldberg cloud experiment performed from 27 October until 13 November 1990. The experiment was carried out by numerous European research groups as a joint effort within the EUROTRAC-GCE project in order to study the interaction of cloud droplets with atmospheric trace constituents. After a description of the observational site and the measurements which were performed, the general cloud formation mechanisms encountered during the experiment are discussed. Special attention is given here to the process of moist adiabatic lifting. Furthermore, an overview is given regarding the pollutant levels in the gas phase, the particulate and the liquid phase, and som…

[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereAtmospheric ScienceCLOUD experiment010504 meteorology & atmospheric sciencesMeteorologybusiness.industryEuropean researchLiquid phaseCloud computing010501 environmental sciences01 natural sciencesGas phase13. Climate actionCloud dropletEnvironmental ChemistryEnvironmental scienceAdiabatic processbusinessComputingMilieux_MISCELLANEOUSField campaign0105 earth and related environmental sciencesJournal of Atmospheric Chemistry
researchProduct