0000000000624574
AUTHOR
J. Souin
Precise half-life measurement of the Si-26 ground state
The beta-decay half-life of 26Si was measured with a relative precision of 1.4*10e3. The measurement yields a value of 2.2283(27) s which is in good agreement with previous measurements but has a precision that is better by a factor of 4. In the same experiment, we have also measured the non-analogue branching ratios and could determine the super-allowed one with a precision similar to the previously reported measurements. The experiment was done at the Accelerator Laboratory of the University of Jyvaskyla where we used the IGISOL technique with the JYFLTRAP facility to separate pure samples of 26Si.
Half-life, branching-ratio, andQ-value measurement for the superallowed0+→0+β+emitterTi42
The half-life, the branching ratio, and the decay $Q$ value of the superallowed $\ensuremath{\beta}$ emitter $^{42}\mathrm{Ti}$ were measured in an experiment performed at the JYFLTRAP facility of the Accelerator Laboratory of the University of Jyv\"askyl\"a. $^{42}\mathrm{Ti}$ is the heaviest ${T}_{z}=\ensuremath{-}1$ nucleus for which high-precision measurements of these quantities have been tried. The half-life (${T}_{1/2}=208.14\ifmmode\pm\else\textpm\fi{}0.45$ ms) and the $Q$ value [${Q}_{\mathrm{EC}}=7016.83(25)$ keV] are close to or reach the required precision of about 0.1%. The branching ratio for the superallowed decay branch [$\mathrm{BR}=47.7(12)%$], a by-product of the half-lif…