0000000000627173

AUTHOR

Hannah M. Rowland

Social learning within and across predator species reduces attacks on novel aposematic prey

Abstract To make adaptive foraging decisions, predators need to gather information about the profitability of prey. As well as learning from prey encounters, recent studies show that predators can learn about prey defences by observing the negative foraging experiences of conspecifics. However, predator communities are complex. While observing heterospecifics may increase learning opportunities, we know little about how social information use varies across predator species.Social transmission of avoidance among predators also has potential consequences for defended prey. Conspicuous aposematic prey are assumed to be an easy target for naïve predators, but this cost may be reduced if multipl…

research product

Can video playback provide social information for foraging blue tits?

Video playback is becoming a common method for manipulating social stimuli in experiments. Parid tits are one of the most commonly studied groups of wild birds. However, it is not yet clear if tits respond to video playback or how their behavioural responses should be measured. Behaviours may also differ depending on what they observe demonstrators encountering. Here we present blue tits (Cyanistes caeruleus) videos of demonstrators discovering palatable or aversive prey (injected with bittertasting Bitrex) from coloured feeding cups. First we quantify variation in demonstrators’ responses to the prey items: aversive prey provoked high rates of beak wiping and head shaking. We then show tha…

research product

Mimicry between unequally defended prey can be parasitic: evidence for quasi-Batesian mimicry

The nature of signal mimicry between defended prey (known as Mullerian mimicry) is controversial. Some authors assert that it is always mutualistic and beneficial, whilst others speculate that less well defended prey may be parasitic and degrade the protection of their better defended co-mimics (quasi-Batesian mimicry). Using great tits (Parus major) as predators of artificial prey, we show that mimicry between unequally defended co-mimics is not mutualistic, and can be parasitic and quasi-Batesian. We presented a fixed abundance of a highly defended model and a moderately defended dimorphic (mimic and distinct non-mimetic) species, and varied the relative frequency of the two forms of the …

research product

A tale of 2 signals: signal mimicry between aposematic species enhances predator avoidance learning

Mullerian mimicry, where 2 or more unrelated aposematic species resemble one another, is predicted to reduce the per capita mortality of co-mimics by allowing them to share the cost of educating nao ¨ve predators about their unpalatability. However, the specific assumptions and predictions of Muller's theory of shared resemblance have been previously unsupported; some authors have suggested that the benefits of signal similarity are undetectable or at best very small. We demonstrate clearly and un- ambiguously that mimicry between 2 defended forms can provide substantial protection from uneducated predators in the manner proposed originally by Muller. By utilizing prey signals that were des…

research product

Social transmission in the wild can reduce predation pressure on novel prey signals

Funder: Suomen Kulttuurirahasto (Finnish Cultural Foundation); doi: https://doi.org/10.13039/501100003125

research product

The effect of social information from live demonstrators compared to video playback on blue tit foraging decisions.

Video playback provides a promising method to study social interactions, and the number of video playback experiments has been growing in recent years. Using videos has advantages over live individuals as it increases the repeatability of demonstrations, and enables researchers to manipulate the features of the presented stimulus. How observers respond to video playback might, however, differ among species, and the efficacy of video playback should be validated by investigating if individuals’ responses to videos are comparable to their responses to live demonstrators. Here, we use a novel foraging task to compare blue tits’ (Cyanistes caeruleus) responses to social information from a live …

research product

The evolution and ecology of multiple antipredator defences

Prey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter. Such “defence portfolios” that defend prey against a single instance of predation are distributed across and within successive stages of the predation sequence (encounter, detection, identification, approach (attack), subjugation and consumption). We contend that at present, our understanding of defence portfolio evolution is incomplete, and seen from the fragmentary perspective of speci…

research product

The biology of color

In living color Animals live in a colorful world, but we rarely stop to think about how this color is produced and perceived, or how it evolved. Cuthill et al. review how color is used for social signals between individual animals and how it affects interactions with parasites, predators, and the physical environment. New approaches are elucidating aspects of animal coloration, from the requirements for complex cognition and perception mechanisms to the evolutionary dynamics surrounding its development and diversification. Science , this issue p. eaan0221

research product

When more is less: the fitness consequences of predators attacking more unpalatable prey when more are presented

In 1879, Fritz Müller hypothesized that mimetic resemblance in which defended prey display the same warning signal would share the costs of predator education. Although Müller argued that predators would need to ingest a fixed number of prey with a given visual signal when learning to avoid unpalatable prey, this assumption lacks empirical support. We report an experiment which shows that, as the number of unpalatable prey presented to them increased, avian predators attacked higher numbers of those prey. We calculated that, when predators increase attacks, the fitness costs incurred by unpalatable prey can be substantial. This suggests that the survival benefits of mimicry could be lower t…

research product

Predators' consumption of unpalatable prey does not vary as a function of bitter taste perception

Many prey species contain defensive chemicals that are described as tasting bitter. Bitter taste perception is, therefore, assumed to be important when predators are learning about prey defenses. However, it is not known how individuals differ in their response to bitter taste, and how this influences their foraging decisions. We conducted taste perception assays in which wild-caught great tits (Parus major) were given water with increasing concentrations of bitter-tasting chloroquine diphosphate until they showed an aversive response to bitter taste. This response threshold was found to vary considerably among individuals, ranging from chloroquine concentrations of 0.01 mmol/L to 8 mmol/L.…

research product

Co-mimics have a mutualistic relationship despite unequal defences

Defensive mimicry, where species have evolved to resemble others in order to evade predators, is quite common in the animal kingdom. The two extremes of the mimicry spectrum are known as 'batesian' and 'mullerian'. Batesian mimics develop signals — visual cues for instance — that are similar to those of species being mimicked, but stop short of adopting the attribute that makes it unprofitable prey to predators. Mullerian mimics both resemble the model species and share the anti-predation attribute — by being dangerous or unpalatable. These different types of mimic were identified a century ago, but the dynamics of mimicry between unequally defended prey remain unresolved. In an experiment …

research product

Social information use by predators : expanding the information ecology of prey defences

Social information use is well documented across the animal kingdom, but how it influences ecological and evolutionary processes is only just beginning to be investigated. Here we evaluate how social transmission may influence species interactions and potentially change or create novel selection pressures by focusing on predator-prey interactions, one of the best studied examples of species coevolution. There is extensive research into how prey can use social information to avoid predators, but little synthesis of how social transmission among predators can influence the outcome of different stages of predation. Here we review evidence that predators use social information during 1) encount…

research product

Social information use about novel aposematic prey is not influenced by a predator’s previous experience with toxins

Aposematism is an effective antipredator strategy. However, the initial evolution and maintenance of aposematism are paradoxical because conspicuous prey are vulnerable to attack by naive predators. Consequently, the evolution of aposematic signal mimicry is also difficult to explain. The cost of conspicuousness can be reduced if predators learn about novel aposematic prey by observing another predator's response to that same prey. On the other hand, observing positive foraging events might also inform predators about the presence of undefended mimics, accelerating predation on both mimics and their defended models. It is currently unknown, however, how personal and social information combi…

research product

Prey community structure affects how predators select for Müllerian mimicry

Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits ( Parus major ) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mort…

research product