0000000000633964

AUTHOR

Martti Rasimus

showing 4 related works from this author

Quasisymmetric Koebe uniformization with weak metric doubling measures

2020

We give a characterization of metric spaces quasisymmetrically equivalent to a finitely connected circle domain. This result generalizes the uniformization of Ahlfors 2-regular spaces by Merenkov and Wildrick. peerReviewed

Pure mathematicsMathematics - Complex VariablesMathematics::Complex VariablesGeneral MathematicsCharacterization (mathematics)metriset avaruudetDomain (mathematical analysis)funktioteoriaMetric spaceMetric (mathematics)FOS: MathematicsMathematics::Metric GeometrymittateoriaComplex Variables (math.CV)Uniformization (set theory)MathematicsIllinois Journal of Mathematics
researchProduct

Uniformization with infinitesimally metric measures

2019

We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces $X$ homeomorphic to $\mathbb R^2$. Given a measure $\mu$ on such a space, we introduce $\mu$-quasiconformal maps $f:X \to \mathbb R^2$, whose definition involves deforming lengths of curves by $\mu$. We show that if $\mu$ is an infinitesimally metric measure, i.e., it satisfies an infinitesimal version of the metric doubling measure condition of David and Semmes, then such a $\mu$-quasiconformal map exists. We apply this result to give a characterization of the metric spaces admitting an infinitesimally quasisymmetric parametrization.

Characterization (mathematics)Space (mathematics)conformal modulus01 natural sciencesMeasure (mathematics)funktioteoriaCombinatoricsMathematics - Metric Geometry0103 physical sciencesFOS: Mathematics0101 mathematicsComplex Variables (math.CV)MathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematicsquasiconformal mappingMetric Geometry (math.MG)metriset avaruudetmetric doubling measureMetric spaceDifferential geometryUniformization theoremMetric (mathematics)quasisymmetric mapping30L10 (Primary) 30C65 28A75 51F99 (Secondary)mittateoria010307 mathematical physicsGeometry and TopologyUniformization (set theory)
researchProduct

Quasispheres and metric doubling measures

2018

Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere $X$ is a quasisphere if and only if $X$ is linearly locally connected and carries a weak metric doubling measure, i.e., a measure that deforms the metric on $X$ without much shrinking.

Pure mathematicsmetric spaces30L10 (Primary) 30C65 28A75 (Secondary)General MathematicsMathematicsofComputing_GENERALCharacterization (mathematics)01 natural sciencesMeasure (mathematics)Intrinsic metricfunktioteoria0103 physical sciencesFOS: MathematicsComplex Variables (math.CV)0101 mathematicsMathematicsDiscrete mathematicsMathematics - Complex VariablesApplied MathematicsInjective metric spaceta111010102 general mathematicsmetriset avaruudetcomplex analysisConvex metric spacemeasure theoryMetric (mathematics)mittateoria010307 mathematical physicsFisher information metricProceedings of the American Mathematical Society
researchProduct

Äärellisen väännön kuvaukset : diskreettisyys ja avoimuus

2015

Tämän tutkielman tarkoituksena on tarkastella äärellisen väännön kuvauksia euklidisissa avaruuksissa, erityisesti niiden diskreettisyyttä ja avoimuutta. Äärellisen väännön kuvaukset ovat yleistys kvasisäännöllisistä kuvauksista, jotka molemmat määritellään käyttämällä vääntöepäyhtälöä. Kvasisäännöllisille eli rajoitetun väännön kuvauksille voimassa olevat tulokset jatkuvuudesta, diskreettisyydestä ja avoimuudesta säilyvät myös äärelliseen vääntöön siirryttäessä. Tähän tarvitaan kuitenkin joitain oletuksia kuvauksen vääntöfunktiosta. Työssä konstruoidaan vastaesimerkkejä kuvauksista, joille nämä ominaisuudet eivät välttämättä ole voimassa. Tutkielman päätuloksina osoitetaan, että Sobolev-ava…

matematiikkadistributiivinen Jacobijatkuvuusdiskreettisyysavoimuusdiskreetti matematiikkaÄärellinen vääntötopologinen asteheikko monotonisuus
researchProduct