6533b861fe1ef96bd12c5082
RESEARCH PRODUCT
Quasispheres and metric doubling measures
Martti RasimusAtte LohvansuuKai Rajalasubject
Pure mathematicsmetric spaces30L10 (Primary) 30C65 28A75 (Secondary)General MathematicsMathematicsofComputing_GENERALCharacterization (mathematics)01 natural sciencesMeasure (mathematics)Intrinsic metricfunktioteoria0103 physical sciencesFOS: MathematicsComplex Variables (math.CV)0101 mathematicsMathematicsDiscrete mathematicsMathematics - Complex VariablesApplied MathematicsInjective metric spaceta111010102 general mathematicsmetriset avaruudetcomplex analysisConvex metric spacemeasure theoryMetric (mathematics)mittateoria010307 mathematical physicsFisher information metricdescription
Applying the Bonk-Kleiner characterization of Ahlfors 2-regular quasispheres, we show that a metric two-sphere $X$ is a quasisphere if and only if $X$ is linearly locally connected and carries a weak metric doubling measure, i.e., a measure that deforms the metric on $X$ without much shrinking.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 | Proceedings of the American Mathematical Society |