0000000000635190

AUTHOR

R. Livanovičs

showing 6 related works from this author

Magnetic dipole with a flexible tail as a self-propelling microdevice.

2012

By numerical simulations, it is illustrated that a magnetic dipole with a flexible tail behaves as a swimmer in AC magnetic fields. The behavior of the swimmer on long time scales is analyzed and it is shown that due to the flexibility of the tail two kinds of torques arise, the first is responsible for the orientation of the swimmer perpendicularly to the AC field and the second drags the filament in the direction of the rotating field. Due to this, circular trajectories of the swimmer are possible; however, these are unstable. The self-propulsion velocity of this swimmer is higher than the velocities of other magnetic microdevices for comparable values of the magnetoelastic number.

PhysicsPhysics::Biological PhysicsFlexibility (anatomy)MiniaturizationField (physics)MechanicsEquipment DesignRoboticsQuantitative Biology::OtherQuantitative Biology::Cell BehaviorMagnetic fieldProtein filamentEquipment Failure AnalysisMagneticsMotionmedicine.anatomical_structureMagnetic FieldsOrientation (geometry)medicinePerpendicularTorqueMagnetic dipolePhysical review. E, Statistical, nonlinear, and soft matter physics
researchProduct

Dynamics of a flexible ferromagnetic filament in a rotating magnetic field.

2017

Flexible magnetic filaments have garnered considerable attention as prospective materials for the creation of different microdevices. We describe a theoretical model of a ferromagnetic filament and derive its equations of motion by variational techniques. The numerical algorithm used to solve the filament dynamics in magnetic fields of different configurations is described. It is found that in a rotating field the filament transitions between synchronous and asynchronous regimes with respect to the rotating field, similarly to a rigid magnetic dipole. The mean angular velocity of the filament is well described by a relation valid for a rigid magnetic dipole with quantitative differences att…

PhysicsRotating magnetic fieldCondensed matter physicsField (physics)Equations of motionAngular velocity02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences010305 fluids & plasmasMagnetic fieldQuantitative Biology::Subcellular ProcessesProtein filamentFerromagnetism0103 physical sciences0210 nano-technologyMagnetic dipolePhysical review. E
researchProduct

Three dimensional dynamics of ferromagnetic swimmer

2011

It is shown that a flexible ferromagnetic filament self-propels perpendicularly to the AC magnetic field during a limited period of time due to the instability of the planar motion with respect to three dimensional perturbations. The transition from the oscillating U-like shapes to the oscillating S-like shapes is characterized by the calculated Wr number.

PhysicsProtein filamentPlanarCondensed matter physicsFerromagnetismOscillationPerpendicularEquations of motionCondensed Matter PhysicsInstabilityElectronic Optical and Magnetic MaterialsMagnetic fieldJournal of Magnetism and Magnetic Materials
researchProduct

FLEXIBLE FERROMAGNETIC FILAMENTS AS ARTIFICIAL CILIA

2011

The model of an artificial cilia as a flexible ferromagnetic filament in a rotating magnetic field is proposed. Numerical algorithm for the simulation of its behavior is developed and the characteristic shapes of the filament with one fixed end under the action of a rotating field are found. It is concluded that ferromagnetic filaments may be used as mixers in microfluidics.

Quantitative Biology::Subcellular ProcessesPhysicsProtein filamentRotating magnetic fieldClassical mechanicsField (physics)Condensed matter physicsFerromagnetismMicrofluidicsStatistical and Nonlinear PhysicsCondensed Matter PhysicsAction (physics)Quantitative Biology::Cell BehaviorElectro-Rheological Fluids and Magneto-Rheological Suspensions
researchProduct

Three dimensional instability of flexible ferromagnetic filament loop

2010

Dynamics of flexible ferromagnetic filaments in an external magnetic field is considered. We report the existence of a buckling instability of the ferromagnetic filament at the magnetic field reversion, which leads to the formation of a metastable loop. Its relaxation through three dimensional transformation of the configurations is observed experimentally and confirmed by numerical simulations. Bending modulus of the flexible ferromagnetic filaments synthesized by linking micron size core-shell ferromagnetic particles with DNA fragments is estimated by comparison of the parameters of the loops observed in the experiment with theoretical calculations. Formation of the loop and its relaxatio…

Soft Condensed Matter (cond-mat.soft)FOS: Physical sciencesCondensed Matter - Soft Condensed Matter
researchProduct

Synchronized rotation in swarms of magnetotactic bacteria.

2017

Self-organizing behavior has been widely reported in both natural and artificial systems, typically distinguishing between temporal organization (synchronization) and spatial organization (swarming). Swarming has been experimentally observed in systems of magnetotactic bacteria under the action of external magnetic fields. Here we present a model of ensembles of magnetotactic bacteria in which hydrodynamic interactions lead to temporal synchronization in addition to the swarming. After a period of stabilization during which the bacteria form a quasiregular hexagonal lattice structure, the entire swarm begins to rotate in a direction opposite to the direction of the rotation of the magnetic …

PhysicsPeriodicityMagnetotactic bacteriaRotationMovementSwarming (honey bee)Swarm behaviourRotationBacterial Physiological Phenomena01 natural sciencesModels BiologicalQuantitative Biology::Cell Behavior010305 fluids & plasmasMagnetic fieldMagnetic Fields0103 physical sciencesArtificial systemsHydrodynamicsHexagonal latticeComputer SimulationTemporal organization010306 general physicsBiological systemPhysical review. E
researchProduct