6533b828fe1ef96bd1288680

RESEARCH PRODUCT

Magnetic dipole with a flexible tail as a self-propelling microdevice.

Andrejs CēbersR. Livanovičs

subject

PhysicsPhysics::Biological PhysicsFlexibility (anatomy)MiniaturizationField (physics)MechanicsEquipment DesignRoboticsQuantitative Biology::OtherQuantitative Biology::Cell BehaviorMagnetic fieldProtein filamentEquipment Failure AnalysisMagneticsMotionmedicine.anatomical_structureMagnetic FieldsOrientation (geometry)medicinePerpendicularTorqueMagnetic dipole

description

By numerical simulations, it is illustrated that a magnetic dipole with a flexible tail behaves as a swimmer in AC magnetic fields. The behavior of the swimmer on long time scales is analyzed and it is shown that due to the flexibility of the tail two kinds of torques arise, the first is responsible for the orientation of the swimmer perpendicularly to the AC field and the second drags the filament in the direction of the rotating field. Due to this, circular trajectories of the swimmer are possible; however, these are unstable. The self-propulsion velocity of this swimmer is higher than the velocities of other magnetic microdevices for comparable values of the magnetoelastic number.

10.1103/physreve.85.041502https://pubmed.ncbi.nlm.nih.gov/22680478