Magnetic characteristics of industrial dust from different sources of emission: A case study of Poland
Abstract Dust emission and deposition in topsoil have negative effect on individual components of the ecosystem. In addition to routine geochemical analyses, magnetic measurements may provide useful complementary information related to the type, concentration and grain-size distribution of the technogenic magnetic particles (TMPs) and thus the degree of contamination of the environment. The aim of this contribution is to use magnetic parameters in distinguishing dust from a wide range of sources of air pollution (power industry, cement, coke, ceramic industries and biomass combustion). We measured magnetic susceptibility, hysteresis parameters and thermomagnetic curves. Our results suggest …
Magnetic susceptibility and heavy metal content in dust from the lime plant and the cement plant in Opole Voivodeship
Magnetic Susceptibility and Heavy Metal Content in Dust From the Lime Plant and the Cement Plant in Opole Voivodeship Until now, dust arising from lime manufacture has been considered harmless to the environment so it has been investigated marginally from the standpoint of environmental protection, especially when it came to magnetic properties and heavy metal content. The aim of the research was filling the gap in this area. The research comprised measurements of magnetic susceptibility, the content of heavy metals, reaction (pH) and specific conductivity of lime dust and also raw material and fuel used for lime production. The samples were taken from one of the lime plants located in Opol…
Technogenic Magnetic Particles in Alkaline Dusts from Power and Cement Plants
During this study, we investigated the mineralogical characterization of technogenic magnetic particles (TMPs) contained in alkaline industrial dust and fly ash emitted by coal burning power plants and cement plants. The reaction of tested dust samples varied between values of pH 8 and pH 12. Their magnetic properties were characterized by measurement of magnetic susceptibility (χ), frequency dependence of magnetic susceptibility (χ(fd)), and temperature dependence of magnetic susceptibility. Mineralogical and geochemical analyses included scanning electron microscopy with energy dispersive spectroscopy, microprobe analysis and X-ray diffraction. The TMPs in fly ash from hard coal combustio…
Some factors affecting an increase in magnetic susceptibility of cement dusts
The aim of the research was to explain reasons of fluctuation in magnetic susceptibility of cement dusts and the consequences for the environment. The research comprised measurements of magnetic susceptibility and Fe content in dusts, and also in raw materials, additives, fuels, mixtures and clinkers used for cement production. The samples were taken in four cement plants located in Opole Province (southern Poland). In addition to this, the influence of two production methods (dry and wet) on magnetic susceptibility of dusts and some aspects of ferrimagnetic minerals formation in the process of clinker burning were considered. It was proven that magnetic susceptibility of dusts depends on r…
BIOMASS UTILIZATION AS A RENEVABLE ENERGY SOURCE IN POLISH POWER INDUSTRY – CURRENT STATUS AND PERSPECTIVES
The depletion of the conventional energy sources, as well as the degradation and pollution of the environment by the exploitation of fossil fuels caused the development of renewable energy sources (RES), including biomass. In Poland, biomass is the most popular renewable energy source, which is closely related to the obligations associated with the membership in the EU. Biomass is the oldest renewable energy source, and its potential, diversity and polymorphism place it over other sources. Besides, the improvement in its parameters, including an increase in its calorific value, resulted in increasing use of biomass as energy source. In the electric power industry biomass is applied in the p…
Quantification of pedogenic particles masked by geogenic magnetic fraction
AbstractPedogenic magnetic fraction in soils is attributed to fine-grained particles, i.e. superparamagnetic grains. In the case of a strongly magnetic geogenic fraction, pedogenic magnetic contribution is hard to detect. To the best of our knowledge, detailed research into the masking of pedogenic superparamagnetic grains and quantification of this effect has not yet been carried out. The principal aim of our research is to quantify the influence of coarse-grained ferrimagnetic fraction on the detection of the superparamagnetic grains. In order to describe the masking phenomenon, volume and frequency-dependent magnetic susceptibility were determined on a set of laboratory prepared samples …