0000000000635280
AUTHOR
Zane Lasa
Translocation of Zymomonas mobilis pyruvate decarboxylase to periplasmic compartment for production of acetaldehyde outside the cytosol
Abstract Acetaldehyde, a valuable commodity chemical, is a volatile inhibitory byproduct of aerobic fermentation in Zymomonas mobilis and in several other microorganisms. Attempting to improve acetaldehyde production by minimizing its contact with the cell interior and facilitating its removal from the culture, we engineered a Z. mobilis strain with acetaldehyde synthesis reaction localized in periplasm. For that, the pyruvate decarboxylase (PDC) was transferred from the cell interior to the periplasmic compartment. This was achieved by the construction of a Z. mobilis Zm6 PDC‐deficient mutant, fusion of PDC with the periplasmic signal sequence of Z. mobilis gluconolactonase, and the follow…
Effect of ADH II Deficiency on the Intracellular Redox Homeostasis in Zymomonas mobilis
Mutant strain of the facultatively anaerobic, ethanol-producing bacteriumZymomonas mobilis, deficient in the Fe-containing alcohol dehydrogenase isoenzyme (ADH II), showed impaired homeostasis of the intracellular NAD(P)H during transition from anaerobic to aerobic conditions, and also in steady-state continuous cultures at various oxygen supplies. At the same time, ADH II deficiency in aerobically grown cells was accompanied by a threefold increase of catalase activity and by about 50% increase of hydrogen peroxide excretion. It is concluded that ADH II under aerobic conditions functions to maintain intracellular redox homeostasis and to protect the cells from endogenous hydrogen peroxide.
The Low Energy-Coupling Respiration in Zymomonas mobilis Accelerates Flux in the Entner-Doudoroff Pathway.
Performing oxidative phosphorylation is the primary role of respiratory chain both in bacteria and eukaryotes. Yet, the branched respiratory chains of prokaryotes contain alternative, low energy-coupling electron pathways, which serve for functions other than oxidative ATP generation (like those of respiratory protection, adaptation to low-oxygen media, redox balancing, etc.), some of which are still poorly understood. We here demonstrate that withdrawal of reducing equivalents by the energetically uncoupled respiratory chain of the bacterium Zymomonas mobilis accelerates its fermentative catabolism, increasing the glucose consumption rate. This is in contrast to what has been observed in o…
Aerobic catabolism and respiratory lactate bypass in Ndh-negative Zymomonas mobilis
Ability to ferment in the presence of oxygen increases the robustness of bioprocesses and opens opportunity for novel industrial setups. The ethanologenic bacterium Zymomonas mobilis performs rapid and efficient anaerobic ethanol fermentation, yet its respiratory NADH dehydrogenase (Ndh)-deficient strain (ndh-) is known to produce ethanol with high yield also under oxic conditions. Compared to the wild type, it has a lower rate of oxygen consumption, and an increased expression of the respiratory lactate dehydrogenase (Ldh). Here we present a quantitative study of the product spectrum and carbon balance for aerobically growing ndh-. Ldh-deficient and Ldh-overexpressing ndh- strains were con…