0000000000648934

AUTHOR

Luis Pla

Overview of the Evolution of Silica-Based Chromo-Fluorogenic Nanosensors

[EN] This review includes examples of silica-based, chromo-fluorogenic nanosensors with the aim of illustrating the evolution of the discipline in recent decades through relevant research developed in our group. Examples have been grouped according to the sensing strategies. A clear evolution from simply functionalized materials to new protocols involving molecular gates and the use of highly selective biomolecules such as antibodies and oligonucleotides is reported. Some final examples related to the evolution of chromogenic arrays and the possible use of nanoparticles to communicate with other nanoparticles or cells are also included. A total of 64 articles have been summarized, highlight…

research product

A new 8-oxo-7,8-2 ' deoxyguanosine nanoporous anodic alumina aptasensor for colorectal cancer diagnosis in blood and urine

Many important human diseases, and especially cancer, have been related to the overproduction of 8-oxo-7,8-dihydro-2 '-deoxyguanosine (8-oxo-dG). This molecule is a product of oxidative stress processes over nucleophilic bases in DNA. In this work, an aptasensor for the rapid, selective and accurate detection of this oncomarker is presented. The aptasensor consists of a nanoporous anodic alumina material loaded with a dye and is functionalized with an aptamer-based "molecular gate". In the presence of target 8-oxo-dG, the capping aptamer displaces from the surface due to the high affinity of the analyte with the capping aptamer, thus inducing delivery of the preloaded fluorescent dye. In co…

research product

Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of Candida auris in clinical samples.

[EN] Candida auris has arisen as an important multidrug-resistant fungus because of several nosocomial outbreaks and elevated rates of mortality. Accurate and rapid diagnosis of C. auris is highly desired; nevertheless, current methods often present severe limitations and produce misidentification. Herein a sensitive, selective, and time-competitive biosensor based on oligonucleotide-gated nanomaterials for effective detection of C. auris is presented. In the proposed design, a nanoporous anodic alumina scaffold is filled with the fluorescent indicator rhodamine B and the pores blocked with different oligonucleotides capable of specifically recognize C. auris genomic DNA. Gate opening modul…

research product

A gated material as immunosensor for in-tissue detection of IDH1-R132H mutation in gliomas

[EN] A nanodevice consisted on nanoporous anodic alumina (NAA) supports functionalized with specific and selective antibody-based gatekeepers for the detection of IDH1-R132H mutant enzyme is here reported. Molecular profile and tissue mutations of the tumours (such as IDH1/IDH2 mutations in gliomas) are a great source of information that already make a difference in terms of prognosis and prediction of response to combined therapy. However, standardized methodologies to determine this mutation are time-consuming and cannot provide information before or during surgical intervention, which significantly limits their utility in terms of intraoperative decisionmaking. To solve this limitation, …

research product

The Effectiveness of Glutathione Redox Status as a Possible Tumor Marker in Colorectal Cancer

The role of oxidative stress (OS) in cancer is a matter of great interest due to the implication of reactive oxygen species (ROS) and their oxidation products in the initiation of tumorigenesis, its progression, and metastatic dissemination. Great efforts have been made to identify the mechanisms of ROS-induced carcinogenesis

research product