0000000000649307

AUTHOR

Jiayin Liu

showing 3 related works from this author

A Rademacher type theorem for Hamiltonians H(x, p) and an application to absolute minimizers

2023

AbstractWe establish a Rademacher type theorem involving Hamiltonians H(x, p) under very weak conditions in both of Euclidean and Carnot-Carathéodory spaces. In particular, H(x, p) is assumed to be only measurable in the variable x, and to be quasiconvex and lower-semicontinuous in the variable p. Without the lower-semicontinuity in the variable p, we provide a counter example showing the failure of such a Rademacher type theorem. Moreover, by applying such a Rademacher type theorem we build up an existence result of absolute minimizers for the corresponding $$L^\infty $$ L ∞ -functional. These improve or extend several known results in the literature.

osittaisdifferentiaaliyhtälötApplied MathematicsvariaatiolaskentaAnalysis
researchProduct

On the Dimension of Kakeya Sets in the First Heisenberg Group

2021

We define Kakeya sets in the Heisenberg group and show that the Heisenberg Hausdorff dimension of Kakeya sets in the first Heisenberg group is at least 3. This lower bound is sharp since, under our definition, the $\{xoy\}$-plane is a Kakeya set with Heisenberg Hausdorff dimension 3.

Mathematics - Metric GeometryMathematics - Classical Analysis and ODEsApplied MathematicsGeneral MathematicsMathematics::Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: MathematicsfraktaalitCondensed Matter::Strongly Correlated ElectronsMetric Geometry (math.MG)mittateoriaPrimary 28A75 Secondary 28A78 28A80
researchProduct

Dimension estimates on circular (s,t)-Furstenberg sets

2023

In this paper, we show that circular $(s,t)$-Furstenberg sets in $\mathbb R^2$ have Hausdorff dimension at least $$\max\{\frac{t}3+s,(2t+1)s-t\} \text{ for all $0<s,t\le 1$}.$$ This result extends the previous dimension estimates on circular Kakeya sets by Wolff.

General MathematicsMathematics::Classical Analysis and ODEsMathematics::General TopologyMetric Geometry (math.MG)Hausdorff dimensionArticlesMathematics - Metric GeometryMathematics - Classical Analysis and ODEscircular Furstenberg setClassical Analysis and ODEs (math.CA)FOS: MathematicsulottuvuusFurstenberg setAnnales Fennici Mathematici
researchProduct