0000000000650478
AUTHOR
Witold Nazarewicz
Isospin-breaking corrections to superallowed Fermi beta-decay in isospin- and angular momentum-projected nuclear Density Functional Theory
Background: The superallowed beta-decay rates provide stringent constraints on physics beyond the Standard Model of particle physics. To extract crucial information about the electroweak force, small isospin-breaking corrections to the Fermi matrix element of superallowed transitions must be applied. Purpose: We perform systematic calculations of isospin-breaking corrections to superallowed beta-decays and estimate theoretical uncertainties related to the basis truncation, time-odd polarization effects related to the intrinsic symmetry of the underlying Slater determinants, and to the functional parametrization. Methods: We use the self-consistent isospin- and angular-momentum-projected nuc…
Nuclear Energy Density Optimization: UNEDF2
The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.
Kerman-Onishi conditions in self-consistent tilted-axis-cranking mean-field calculations
\item[Background] For cranked mean-field calculations with arbitrarily oriented rotational frequency vector $\boldsymbol{\omega}$ in the intrinsic frame, one has to employ constraints on average values of the quadrupole-moment tensor, so as to keep the nucleus in the principal-axis reference frame. Kerman and Onishi [Nucl. Phys. A {\bf 361}, 179 (1981)] have shown that the Lagrangian multipliers that correspond to the required constraints are proportional to $\boldsymbol{\omega} \times \boldsymbol{J}$, where $\boldsymbol{J}$ is the average angular momentum vector. \item[Purpose] We study the validity and consequences of the Kerman-Onishi conditions in the context of self-consistent tilted-a…
Universal trend of charge radii of even-even Ca-Zn nuclei
Radii of nuclear charge distributions carry information about the strong and electromagnetic forces acting inside the atomic nucleus. While the global behavior of nuclear charge radii is governed by the bulk properties of nuclear matter, their local trends are affected by quantum motion of proton and neutron nuclear constituents. The measured differential charge radii $\delta\langle r^2_c\rangle$ between neutron numbers $N=28$ and $N=40$ exhibit a universal pattern as a function of $n=N-28$ that is independent of the atomic number. Here we analyze this remarkable behavior in even-even nuclei from calcium to zinc using two state-of-the-art theories based on quantified nuclear interactions: t…
Low energy collective modes of deformed superfluid nuclei within the finite amplitude method
Background: The major challenge for nuclear theory is to describe and predict global properties and collective modes of atomic nuclei. Of particular interest is the response of the nucleus to a time-dependent external field that impacts the low-energy multipole and beta-decay strength. Purpose: We propose a method to compute low-lying collective modes in deformed nuclei within the finite amplitude method (FAM) based on the quasiparticle random-phase approximation (QRPA). By using the analytic property of the response function, we find the QRPA amplitudes by computing the residua of the FAM amplitudes by means of a contour integration around the QRPA poles in a complex frequency plane. Metho…
Self-Consistent Tilted-Axis-Cranking Study of Triaxial Strongly Deformed Bands inEr158at Ultrahigh Spin
Stimulated by recent experimental discoveries, triaxial strongly deformed (TSD) states in $^{158}\mathrm{Er}$ at ultrahigh spins have been studied by means of the Skyrme-Hartree-Fock model and the tilted-axis-cranking method. Restricting the rotational axis to one of the principal axes---as done in previous cranking calculations---two well-defined TSD minima in the total Routhian surface are found for a given configuration: one with positive and another with negative triaxial deformation $\ensuremath{\gamma}$. By allowing the rotational axis to change direction, the higher-energy minimum is shown to be a saddle point. This resolves the long-standing question of the physical interpretation o…
Isospin-invariant Skyrme energy-density-functional approach with axial symmetry
We develop the isospin-invariant Skyrme-EDF method by considering local densities in all possible isospin channels and proton-neutron (p-n) mixing terms as mandated by the isospin symmetry. The EDF employed has the most general form that depends quadratically on the isoscalar and isovector densities. We test and benchmark the resulting p-n EDF approach, and study the general properties of the new scheme by means of the cranking in the isospin space. We extend the existing axial DFT solver HFBTHO to the case of isospin-invariant EDF approach with all possible p-n mixing terms. Explicit expressions have been derived for all the densities and potentials that appear in the isospin representatio…
Additivity of effective quadrupole moments and angular momentum alignments in the A~130 nuclei
The additivity principle of the extreme shell model stipulates that an average value of a one-body operator be equal to the sum of the core contribution and effective contributions of valence (particle or hole) nucleons. For quadrupole moment and angular momentum operators, we test this principle for highly and superdeformed rotational bands in the A~130 nuclei. Calculations are done in the self-consistent cranked non-relativistic Hartree-Fock and relativistic Hartree mean-field approaches. Results indicate that the additivity principle is a valid concept that justifies the use of an extreme single-particle model in an unpaired regime typical of high angular momenta.
Measurement and microscopic description of odd-even staggering of charge radii of exotic copper isotopes
Isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. In charge radii of short-lived copper isotopes, a reduction of this effect is observed when the neutron number approaches fifty. The mesoscopic nature of the atomic nucleus gives rise to a wide array of macroscopic and microscopic phenomena. The size of the nucleus is a window into this duality: while the charge radii globally scale as $A^{1/3}$, their evolution across isotopic chains reveals unanticipated structural phenomena [1-3]. The most ubiquitous of these is perhaps the Odd-Even Staggering (OES) [4]: isotopes with an odd number of neutrons are usually smaller in size than …
Nuclear energy density optimization: Shell structure
Nuclear density functional theory is the only microscopical theory that can be applied throughout the entire nuclear landscape. Its key ingredient is the energy density functional. In this work, we propose a new parameterization UNEDF2 of the Skyrme energy density functional. The functional optimization is carried out using the POUNDerS optimization algorithm within the framework of the Skyrme Hartree-Fock-Bogoliubov theory. Compared to the previous parameterization UNEDF1, restrictions on the tensor term of the energy density have been lifted, yielding a very general form of the energy density functional up to second order in derivatives of the one-body density matrix. In order to impose c…
Recoil-α-fission and recoil-α–α-fission events observed in the reaction 48Ca + 243Am
Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z=115, two recoil-α-fission and five recoil-α-α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation ch…
Asymptotic normalization coefficients and continuum coupling in mirror nuclei
Background: An asymptotic normalization coefficient (ANC) characterizes the asymptotic form of a one-nucleon overlap integral required for description of nucleon-removal reactions. Purpose: We investigate the impact of the particle continuum on proton and neutron ANCs for mirror systems from $p$- and $sd$-shell regions. Method: We use the real-energy and complex-energy continuum shell model approaches. Results: We studied the general structure of the single-particle ANCs as a function of the binding energy and orbital angular momentum. We computed ANCs in mirror nuclei for different physical situations, including capture reactions to weakly-bound and unbound states. Conclusions: We demonstr…
Probing Sizes and Shapes of Nobelium Isotopes by Laser Spectroscopy
Until recently, ground-state nuclear moments of the heaviest nuclei could only be inferred from nuclear spectroscopy, where model assumptions are required. Laser spectroscopy in combination with modern atomic structure calculations is now able to probe these moments directly, in a comprehensive and nuclear-model-independent way. Here we report on unique access to the differential mean-square charge radii of ^{252,253,254}No, and therefore to changes in nuclear size and shape. State-of-the-art nuclear density functional calculations describe well the changes in nuclear charge radii in the region of the heavy actinides, indicating an appreciable central depression in the deformed proton densi…
Multidimensional Skyrme-density-functional Study of the Spontaneous Fission of 238U
We determined the spontaneous fission lifetime of 238U by a minimization of the action integral in a three-dimensional space of collective variables. Apart from the mass-distribution multipole moments Q20 (elongation) and Q30 (left–right asymmetry), we also considered the pairing- fluctuation parameter λ2 as a collective coordinate. The collective potential was obtained self-consistently using the Skyrme energy density functional SkM∗ . The inertia tensor was obtained within the nonperturbative cranking approximation to the adiabatic time-dependent Hartree–Fock– Bogoliubov approach. The pairing-fluctuation parameter λ2 allowed us to control the pairing gap along the fission path, which sign…
Quadrupole collective inertia in nuclear fission: Cranking approximation
Collective mass tensor derived from the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) approach is compared with that obtained in the Gaussian Overlap Approximation (GOA) to the generator coordinate method. Illustrative calculations are carried out for one-dimensional quadrupole fission pathways in 256Fm. It is shown that the collective mass exhibits strong variations with the quadrupole collective coordinate. These variations are related to the changes in the intrinsic shell structure. The differences between collective inertia obtained in cranking and perturbative cranking approximations to ATDHFB, and within GOA, are discussed.
Self-consistent symmetries in the proton-neutron Hartree-Fock-Bogoliubov approach
Symmetry properties of densities and mean fields appearing in the nuclear Density Functional Theory with pairing are studied. We consider energy functionals that depend only on local densities and their derivatives. The most important self-consistent symmetries are discussed: spherical, axial, space-inversion, and mirror symmetries. In each case, the consequences of breaking or conserving the time-reversal and/or proton-neutron symmetries are discussed and summarized in a tabulated form, useful in practical applications.
The limits of the nuclear landscape
In 2011, 100 new nuclides were discovered. They joined the approximately 3,000 stable and radioactive nuclides that either occur naturally on Earth or are synthesized in the laboratory. Every atomic nucleus, characterized by a specific number of protons and neutrons, occupies a spot on the chart of nuclides, which is bounded by 'drip lines' indicating the values of neutron and proton number at which nuclear binding ends. The placement of the neutron drip line for the heavier elements is based on theoretical predictions using extreme extrapolations, and so is uncertain. However, it is not known how uncertain it is or how many protons and neutrons can be bound in a nucleus. Here we estimate t…
Hartree-Fock-Bogoliubov theory of polarized Fermi systems
Condensed Fermi systems with an odd number of particles can be described by means of polarizing external fields having a time-odd character. We illustrate how this works for Fermi gases and atomic nuclei treated by density functional theory or Hartree-Fock-Bogoliubov (HFB) theory. We discuss the method based on introducing two chemical potentials for different superfluid components, whereby one may change the particle-number parity of the underlying quasiparticle vacuum. Formally, this method is a variant of non-collective cranking, and the procedure is equivalent to the so-called blocking. We present and exemplify relations between the two-chemical-potential method and the cranking approxi…
Computational nuclear quantum many-body problem: The UNEDF project
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF scien…
r -process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos
This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both, electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will s…
Charge radii and neutron correlations in helium halo Nuclei
Within the complex-energy configuration interaction framework, we study correlations of valence neutrons to explain the behavior of charge radii in the neutron halo nuclei $^{6,8}$He. We find that the experimentally observed decrease of the charge radius between $^6$He and $^8$He is caused by a subtle interplay between three effects: dineutron correlations, a spin-orbit contribution to the charge radius, and a core swelling effect. We demonstrate that two-neutron angular correlations in the $2^+_1$ resonance of $^6$He differ markedly from the ground-state correlations in $^{6,8}$He.
Microscopic calculations of isospin-breaking corrections to superallowed beta-decay
The superallowed beta-decay rates that provide stringent constraints on physics beyond the Standard Model of particle physics are affected by nuclear structure effects through isospin-breaking corrections. The self-consistent isospin- and angular-momentum-projected nuclear density functional theory is used for the first time to compute those corrections for a number of Fermi transitions in nuclei from A=10 to A=74. The resulting leading element of the CKM matrix, |V_{ud}|= 0.97447(23), agrees well with the recent result by Towner and Hardy [Phys. Rev. C {\bf 77}, 025501 (2008)].
Microscopic description of complex nuclear decay: multimodal fission
Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.
Spontaneous fission lifetimes from the minimization of self-consistent collective action
The spontaneous fission lifetime of 264Fm has been studied within nuclear density functional theory by minimizing the collective action integral for fission in a two-dimensional quadrupole collective space representing elongation and triaxiality. The collective potential and inertia tensor are obtained self-consistently using the Skyrme energy density functional and density-dependent pairing interaction. The resulting spontaneous fission lifetimes are compared with the static result obtained with the minimum-energy pathway. We show that fission pathways strongly depend on assumptions underlying collective inertia. With the non-perturbative mass parameters, the dynamic fission pathway become…
Isospin-symmetry restoration within the nuclear density functional theory: formalism and applications
Isospin symmetry of atomic nuclei is explicitly broken by the charge-dependent interactions, primarily the Coulomb force. Within the nuclear density functional theory, isospin is also broken spontaneously. We propose a projection scheme rooted in a mean field theory, that allows the consistent treatment of isospin breaking in both ground and exited nuclear states. We demonstrate that this scheme is essentially free from spurious divergences plaguing particle-number and angular-momentum restoration approaches. Applications of the new technique include excited high-spin states in medium-mass N=Z nuclei, such as superdeformed bands and many-particle-many-hole terminating states.
Opportunities for Fundamental Physics Research with Radioactive Molecules
Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, mo…
Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discontinuity in Charge Radii across the N=82 Shell Closure
Physical review letters 122(19), 192502 (2019). doi:10.1103/PhysRevLett.122.192502
From Calcium to Cadmium: Testing the Pairing Functional through Charge Radii Measurements of Cd100−130
Differences in mean-square nuclear charge radii of $^{100--130}\mathrm{Cd}$ are extracted from high-resolution collinear laser spectroscopy of the $5s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}5p\text{ }{^{2}P}_{3/2}$ transition of the ion and from the $5s5p\text{ }{^{3}P}_{2}\ensuremath{\rightarrow}5s6s\text{ }{^{3}S}_{1}$ transition in atomic Cd. The radii show a smooth parabolic behavior on top of a linear trend and a regular odd-even staggering across the almost complete $sdgh$ shell. They serve as a first test for a recently established new Fayans functional and show a remarkably good agreement in the trend as well as in the total nuclear charge radius.
Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N = 32
Nuclear charge radii are sensitive probes of different aspects of the nucleon-nucleon interaction and the bulk properties of nuclear matter; thus, they provide a stringent test and challenge for nuclear theory. The calcium region has been of particular interest, as experimental evidence has suggested a new magic number at $N = 32$ [1-3], while the unexpectedly large increases in the charge radii [4,5] open new questions about the evolution of nuclear size in neutron-rich systems. By combining the collinear resonance ionization spectroscopy method with $\beta$-decay detection, we were able to extend the charge radii measurement of potassium ($Z =19$) isotopes up to the exotic $^{52}$K ($t_{1…
White paper: from bound states to the continuum
This white paper reports on the discussions of the 2018 Facility for Rare Isotope Beams Theory Alliance (FRIB-TA) topical program ‘From bound states to the continuum: Connecting bound state calculations with scattering and reaction theory’. One of the biggest and most important frontiers in nuclear theory today is to construct better and stronger bridges between bound state calculations and calculations in the continuum, especially scattering and reaction theory, as well as teasing out the influence of the continuum on states near threshold. This is particularly challenging as many-body structure calculations typically use a bound state basis, while reaction calculations more commonly utili…
Shell structure beyond the proton drip line studied via proton emission from deformed 141Ho
Abstract Fine structure in proton emission from the 7 / 2 − [ 523 ] ground state and from the 1 / 2 + [ 411 ] isomer in deformed nucleus 141Ho was studied by means of fusion-evaporation reactions and digital signal processing. Proton transitions to the first excited 2+ state in 140Dy, with the branching ratio of I p g s ( 2 + ) = 0.9 ± 0.2 % and I p m ( 2 + ) = 1.7 ± 0.5 % , were observed. The data are analyzed within the non-adiabatic weak coupling model assuming a large quadrupole deformation of the daughter nucleus 140Dy as predicted by the self-consistent theory. Implications of this result on coexistence effects around N = 74 are discussed. Significant modifications of the proton shell…
ISOSPIN MIXING IN THE VICINITY OF THE N = Z LINE
We present the isospin- and angular-momentum-projected nuclear density functional theory (DFT) and its applications to the isospin-breaking corrections to the superallowed beta-decay rates in the vicinity of the N=Z line. A preliminary value obtained for the Cabbibo-Kobayashi-Maskawa matrix element, |V_{ud}|=0.97463(24), agrees well with the recent estimate by Towner and Hardy [Phys. Rev. C{\bf 77}, 025501 (2008)]. We also discuss new opportunities to study the symmetry energy by using the isospin-projected DFT.
Spatial symmetries of the local densities
Spatial symmetries of the densities appearing in the nuclear Density Functional Theory are discussed. General forms of the local densities are derived by using methods of construction of isotropic tensor fields. The spherical and axial cases are considered.
Theoretical approaches that use one-body densities as dynamical variables, such as Hartree-Fock or the density functional theory (DFT), break isospin symmetry both explicitly, by virtue of charge-dependent interactions, and spontaneously. To restore the spontaneously broken isospin symmetry, we implemented the isospin-projection scheme on top of the Skyrme-DFT approach. This development allows for consistent treatment of isospin mixing in both ground and exited nuclear states. In this study, we apply this method to evaluate the isospin impurities in ground states of even-even and odd-odd N~Z nuclei. By including simultaneous isospin and angular-momentum projection, we compute the isospin-br…
One-quasiparticle States in the Nuclear Energy Density Functional Theory
We study one-quasiproton excitations in the rare-earth region in the framework of the nuclear Density Functional Theory in the Skyrme-Hartree-Fock-Bogoliubov variant. The blocking prescription is implemented exactly, with the time-odd mean field fully taken into account. The equal filling approximation is compared with the exact blocking procedure. We show that both procedures are strictly equivalent when the time-odd channel is neglected, and discuss how nuclear alignment properties affect the time-odd fields. The impact of time-odd fields on calculated one-quasiproton bandhead energies is found to be rather small, of the order of 100-200 keV; hence, the equal filling approximation is suff…
Error Estimates of Theoretical Models: a Guide
This guide offers suggestions/insights on uncertainty quantification of nuclear structure models. We discuss a simple approach to statistical error estimates, strategies to assess systematic errors, and show how to uncover inter-dependencies by correlation analysis. The basic concepts are illustrated through simple examples. By providing theoretical error bars on predicted quantities and using statistical methods to study correlations between observables, theory can significantly enhance the feedback between experiment and nuclear modeling.
Complex-energy approach to sum rules within nuclear density functional theory
The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or EDF. But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish an efficient framework to compute sum rules of the response that is adaptable to the optimization of the nuclear EDF an…
Isospin mixing in nuclei within the nuclear density functional theory.
We present the self-consistent, non-perturbative analysis of isospin mixing using the nuclear density functional approach and the rediagonalization of the Coulomb interaction in the good-isospin basis. The largest isospin-breaking effects are predicted for N = Z nuclei and they quickly fall with the neutron excess. The unphysical isospin violation on the mean-field level, caused by the neutron excess, is eliminated by the proposed method. We find a significant dependence of the magnitude of isospin breaking on the parametrization of the nuclear interaction term. A rough correlation has been found between the isospin mixing parameter and the difference of proton and neutron rms radii. The th…
Neutron-skin uncertainties of Skyrme energy density functionals
Background: Neutron-skin thickness is an excellent indicator of isovector properties of atomic nuclei. As such, it correlates strongly with observables in finite nuclei that depend on neutron-to-proton imbalance and the nuclear symmetry energy that characterizes the equation of state of neutron-rich matter. A rich worldwide experimental program involving studies with rare isotopes, parity violating electron scattering, and astronomical observations is devoted to pinning down the isovector sector of nuclear models. Purpose: We assess the theoretical systematic and statistical uncertainties of neutron-skin thickness and relate them to the equation of state of nuclear matter, and in particular…
Isospin mixing and the continuum coupling in weakly bound nuclei
The isospin breaking effects due to the Coulomb interaction in weakly-bound nuclei are studied using the Gamow Shell Model, a complex-energy configuration interaction approach which simultaneously takes into account many-body correlations between valence nucleons and continuum effects. We investigate the near-threshold behavior of one-nucleon spectroscopic factors and the structure of wave functions along an isomultiplet. Illustrative calculations are carried out for the T=1 isobaric triplet. By using a shell-model Hamiltonian consisting of an isoscalar nuclear interaction and the Coulomb term, we demonstrate that for weakly bound or unbound systems the structure of isobaric analog states v…
Structure of superheavy nuclei along decay chains of element 115
[Introduction] A recent high-resolution α , X -ray, and γ -ray coincidence-spectroscopy experiment offered the first glimpse of excitation schemes of isotopes along α -decay chains of Z = 115. To understand these observations and to make predictions about shell structure of superheavy nuclei below 288 115, we employ two complementary mean-field models: the self-consistent Skyrme energy density functional approach and the macroscopic-microscopic Nilsson model. We discuss the spectroscopic information carried by the new data. In particular, candidates for the experimentally observed E 1 transitions in 276 Mt are proposed. We find that the presence and nature of low-energy E 1 transitions in w…
Isospin Mixing Within the Symmetry Restored Density Functional Theory and Beyond
We present results of systematic calculations of the isospin-symmetry-breaking corrections to the superallowed I=$0+,T=1 --> I=0+,T=1 beta-decays, based on the self-consistent isospin- and angular-momentum-projected nuclear density functional theory (DFT). We discuss theoretical uncertainties of the formalism related to the basis truncation, parametrization of the underlying energy density functional, and ambiguities related to determination of Slater determinants in odd-odd nuclei. A generalization of the double-projected DFT model towards a no core shell-model-like configuration-mixing approach is formulated and implemented. We also discuss new opportunities in charge-symmetry- and cha…
Multipole modes in deformed nuclei within the finite amplitude method
Background: To access selected excited states of nuclei, within the framework of nuclear density functional theory, the quasiparticle random phase approximation (QRPA) is commonly used. Purpose: We present a computationally efficient, fully self-consistent framework to compute the QRPA transition strength function of an arbitrary multipole operator in axially-deformed superfluid nuclei. Methods: The method is based on the finite amplitude method (FAM) QRPA, allowing fast iterative solution of QRPA equations. A numerical implementation of the FAM-QRPA solver module has been carried out for deformed nuclei. Results: The practical feasibility of the deformed FAM module has been demonstrated. I…
Unexpectedly large charge radii of neutron-rich calcium isotopes
Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain "magic" numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly-magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known Ca isotopes have been successfully described by nuclear theory, it is still a challenge to predict their charge radii evolution. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theo…
Nucleon localization function in rotating nuclei
Background: An electron localization function was originally introduced to visualize bond structures in molecules. It became a useful tool to describe electron configurations in atoms, molecules and solids. In nuclear physics, a nucleon localization function (NLF) has been used to characterize clusters in light nuclei, fragment formation in fission and pasta phases in the inner crust of neutron stars. Purpose: We use the NLF to study the nuclear response to fast rotation. Methods: We generalize the NLF to the case of nuclear rotation. The extended expressions involve both time-even and time-odd local densities. Since current density and density gradient contribute to the NLF primarily at th…
Hartree-Fock-Bogoliubov solution of the pairing Hamiltonian in finite nuclei
We present an overview of the Hartree-Fock-Bogoliubov (HFB) theory of nucleonic superfluidity for finite nuclei. After introducing basic concepts related to pairing correlations, we show how the correlated pairs are incorporated into the HFB wave function. Thereafter, we present derivation and structure of the HFB equations within the superfluid nuclear density functional formalism and discuss several aspects of the theory, including the unitarity of the Bogoliubov transformation in truncated single-particle and quasiparticle spaces, form of the pairing functional, structure of the HFB continuum, regularization and renormalization of pairing fields, and treatment of pairing in systems with …
Pairing-induced speedup of nuclear spontaneous fission
Collective inertia is strongly influenced at the level crossing at which quantum system changes diabatically its microscopic configuration. Pairing correlations tend to make the large-amplitude nuclear collective motion more adiabatic by reducing the effect of those configuration changes. Competition between pairing and level crossing is thus expected to have a profound impact on spontaneous fission lifetimes. To elucidate the role of nucleonic pairing on spontaneous fission, we study the dynamic fission trajectories of $^{264}$Fm and $^{240}$Pu using the state-of-the-art self-consistent framework. We employ the superfluid nuclear density functional theory with the Skyrme energy density fun…