0000000000650810

AUTHOR

Silvio O. Rizzoli

showing 2 related works from this author

Brain erythropoietin fine-tunes a counterbalance between neurodifferentiation and microglia in the adult hippocampus

2021

In adult cornu ammonis hippocampi, erythropoietin (EPO) expression drives the differentiation of new neurons,independent of DNA synthesis, and increases dendritic spine density. This substantial brain hardwareupgrade is part of a regulatory circle: during motor-cognitive challenge, neurons experience ‘‘functional’’hypoxia, triggering neuronal EPO production, which in turn promotes improved performance. Here, weshow an unexpected involvement of resident microglia. During EPO upregulation and stimulated neurodifferentiation,either by functional or inspiratory hypoxia, microglia numbers decrease. Treating mice with recombinanthuman (rh)EPO or exposure to hypoxia recapitulates these changes and…

Dendritic spineQH301-705.5Mice TransgenicBiologyHippocampusGeneral Biochemistry Genetics and Molecular BiologyMice03 medical and health sciences0302 clinical medicineDownregulation and upregulationrecombinant human EPOhemic and lymphatic diseasesmedicineAnimalsBiology (General)Hypoxia BrainReceptorErythropoietin030304 developmental biology0303 health sciencesMicrogliahypoxiaPyramidal CellsNeurogenesisneurodifferentiationCell DifferentiationHypoxia (medical)CSF1Rneurogenesismedicine.anatomical_structurenervous systemErythropoietinApoptosisIL-34Microgliamedicine.symptomNeuroscience030217 neurology & neurosurgerymedicine.drug
researchProduct

Human brain organoids assemble functionally integrated bilateral optic vesicles

2021

During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progeni…

OrganogenesisInduced Pluripotent Stem Cellsretinal pigment epitheliumiPSCsEmbryonic DevelopmentBiology03 medical and health sciencesDiencephalonchemistry.chemical_compoundProsencephalon0302 clinical medicineGeneticsOrganoidmedicineHumansInduced pluripotent stem cell030304 developmental biology0303 health sciencesforebrain organoidsRetinal pigment epitheliumbrain organoidsVesicleprimordial eye fieldsOVB-organoidsCell DifferentiationRetinalCell BiologyOptic vesicleHuman brainCell biologyOrganoidsmedicine.anatomical_structurenervous systemchemistryMolecular MedicineFOXG1; OVB-organoids; brain organoids; forebrain organoids; iPSCs; optic vesicles; primary cilium; primordial eye fields; retinal pigment epitheliumoptic vesiclesFOXG1030217 neurology & neurosurgeryprimary ciliumCell Stem Cell
researchProduct