0000000000651753
AUTHOR
Song Guo
Evidence of oblate-prolate shape coexistence in the strongly-deformed nucleus 119Cs
International audience; Prolate-oblate shape coexistence close to the ground state in the strongly-deformed proton-rich A≈120 nuclei is reported for the first time. One of the four reported bands in 119Cs, built on a 11/2− state at 670 keV, consists of nearly degenerate signature partners, and has properties which unequivocally indicate the strongly-coupled πh11/2[505]11/2− configuration associated with oblate shape. Together with the decoupled πh11/2[541]3/2− band built on the 11/2− prolate state at 110 keV, for which a half-life of T1/2=55(5)μs has been measured, the new bands bring evidence of shape coexistence at low spin in the proton-rich strongly deformed A≈120 nuclei, a phenomenon p…
Evolution from γ -soft to stable triaxiality in Nd136 as a prerequisite of chirality
The level structure of Nd136 has been investigated using the Mo100(Ar40,4n) reaction and the JUROGAM II+RITU+GREAT setup. The level scheme has been extended significantly. Many new bands have been identified both at low and high spin, among which are five nearly degenerate bands interpreted as chiral partners. Excitation energies, spins, and parities of the previously known bands are revised and firmly established, and some previously known bands have been revised. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinsky calculations. The band structure of Nd136 is now clarified and the various types of single-particle and collective excitations are well underst…
Rich band structure and multiple long-lived isomers in the odd-odd Cs118 nucleus
Tilted precession bands in Nd135
Two new excited bands built on the πh11/2 configuration have been identified in Nd135 in addition to the known πh11/2 band. The energy spectra of the excited bands and the available electromagnetic transition probabilities are in good agreement with theoretical results obtained using quasiparticle-plus-triaxial-rotor model calculations. The properties of the bands identify them as tilted precession bands instead of wobbling bands. Our results give a new insight into the interpretation of the low-lying bands in odd-A mass nuclei, and can stimulate future studies to address the nuclear triaxiality.
Evidence of chiral bands in even-even nuclei
Evidence for chiral doublet bands has been observed for the first time in the even-even nucleus 136 Nd . One chiral band was firmly established. Four other candidates for chiral bands were also identified, which can contribute to the realization of the multiple pairs of chiral doublet bands ( M χ D ) phenomenon. The observed bands are investigated by the constrained and tilted axis cranking covariant density functional theory (TAC-CDFT). Possible configurations have been explored. The experimental energy spectra, angular momenta, and B ( M 1 ) / B ( E 2 ) values for the assigned configurations are globally reproduced by TAC-CDFT. Calculated results support the chiral interpretation of the o…
Observation of the proton emitter 116,57La59
The quantum tunneling and emission of a single constituent nucleon provide a beautifully simple and unique window into the complex properties of atomic nuclei at the extreme edge of nuclear existence. In particular, for odd-odd proton emitting nuclides, the associated decay energy and partial half-life can be used to probe the correlations between the valence neutrons and protons which have been theoretically predicted to favour a new type of nuclear superfluidity, isoscalar neutron-proton pairing, for which the experimental “smoking gun" remains elusive. In the present work, proton emission from the lanthanum isotope 11657La59, 23 neutrons away from the only stable isotope 13957La82, is re…
Highly deformed bands in Nd nuclei: New results and consistent interpretation within the cranked Nilsson-Strutinsky formalism
International audience; Three new highly-deformed (HD) bands are identified in Nd136 and the highly deformed band of Nd137 is extended at higher spin by four transitions, revealing a band crossing associated with the occupation of the second νi13/2 intruder orbital. Extended cranked Nilsson-Strutinsky calculations are performed for all HD bands observed in Nd134, Nd136, and Nd137, achieving for the first time a consistent interpretation of all HD bands in the Nd nuclei. The new interpretation has significant consequences, like the change of parity of the yrast HD bands of Nd134 and Nd136, and the involvement of two negative-parity neutron intruder orbitals in the configurations of most HD b…
Collective rotation of an oblate nucleus at very high spin
International audience; A sequence of nine almost equidistant quadrupole transitions is observed in Nd137. The sequence represents an extremely regular rotational band that extends to a spin of about 75/2 and an excitation energy of ≈4.5MeV above yrast. Cranked mean-field calculations of the Nilsson-Strutinsky type suggest an oblate shape for the band. They reproduce the observed I(I+1) dependence of the rotational energy whereas predicting a pronounced decrease in the deformation, which is the hallmark of antimagnetic rotation.
Neutron excitations in Ba119
Chirality of $^{135}$Nd reexamined: Evidence for multiple chiral doublet bands
One new pair of positive-parity chiral doublet bands have been identified in the odd-$A$ nucleus $^{135}$Nd which together with the previously reported negative-parity chiral doublet bands constitute a third case of multiple chiral doublet (M$\chi$D) bands in the $A\approx130$ mass region. The properties of the M$\chi$D bands are well reproduced by constrained covariant density functional theory and particle rotor model calculations. The newly observed M$\chi$D bands in $^{135}$Nd represents an important milestone in supporting the existence of M$\chi$D in nuclei.