6533b829fe1ef96bd128a6ef

RESEARCH PRODUCT

Observation of the proton emitter 116,57La59

Wei ZhangBo CederwallÖZge AktasXiaoyu LiuAysegül ErtoprakAyse NybergKalle AuranenBetool AlayedHussam BadranHelen BostonMaria DoncelUlrika ForsbergTuomas GrahnPaul T. GreenleesSong GuoJacob HeeryJoshua HiltonDavid JenkinsRauno JulinSakari JuutinenMinna LuomaOlavi NeuvonenJoonas OjalaRobert D. PageJanne PakarinenJari PartanenEdward S. PaulCostel PetrachePanu RahkilaPanu RuotsalainenMikael SandzeliusJan SarénStuart SzwecHolly TannJuha UusitaloRobert Wadsworth

subject

isotoopitmassaspektrometriaprotonitydinfysiikkaemissio (fysiikka)

description

The quantum tunneling and emission of a single constituent nucleon provide a beautifully simple and unique window into the complex properties of atomic nuclei at the extreme edge of nuclear existence. In particular, for odd-odd proton emitting nuclides, the associated decay energy and partial half-life can be used to probe the correlations between the valence neutrons and protons which have been theoretically predicted to favour a new type of nuclear superfluidity, isoscalar neutron-proton pairing, for which the experimental “smoking gun" remains elusive. In the present work, proton emission from the lanthanum isotope 11657La59, 23 neutrons away from the only stable isotope 13957La82, is reported. 116La nuclei were synthesised in the fusion-evaporation reaction 58Ni(64Zn, p5n)116La and identified via their proton radioactivity using the mass spectrometer MARA (Mass Analysing Recoil Apparatus) and the silicon detectors placed at its focal plane. Comparisons of the measured proton energy (Ep = 718 ± 9 keV) and half-life (T1/2 = 50 ± 22 ms) with values calculated using the Universal Decay Law approach indicate that the proton is emitted with an orbital angular momentum l = 2 and that its emission probability is enhanced relative to its closest, less exotic, odd-even lanthanum isotope (11757La60) while the proton-emission Q-value is lower. We propose this to be a possible signature for the presence of strong neutron-proton pair correlations in this exotic, neutron deficient system. The observations of γ decays from isomeric states in 116La and 117La are also reported. peerReviewed

http://urn.fi/URN:NBN:fi:jyu-202211235318