0000000000654043

AUTHOR

Toni Ikonen

0000-0001-5969-7912

Two‐dimensional metric spheres from gluing hemispheres

We study metric spheres (Z,dZ) obtained by gluing two hemispheres of S2 along an orientation-preserving homeomorphism g:S1→S1, where dZ is the canonical distance that is locally isometric to S2 off the seam. We show that if (Z,dZ) is quasiconformally equivalent to S2, in the geometric sense, then g is a welding homeomorphism with conformally removable welding curves. We also show that g is bi-Lipschitz if and only if (Z,dZ) has a 1-quasiconformal parametrization whose Jacobian is comparable to the Jacobian of a quasiconformal mapping h:S2→S2. Furthermore, we show that if g−1 is absolutely continuous and g admits a homeomorphic extension with exponentially integrable distortion, then (Z,dZ) …

research product

Quasiconformal geometry and removable sets for conformal mappings

We study metric spaces defined via a conformal weight, or more generally a measurable Finsler structure, on a domain $\Omega \subset \mathbb{R}^2$ that vanishes on a compact set $E \subset \Omega$ and satisfies mild assumptions. Our main question is to determine when such a space is quasiconformally equivalent to a planar domain. We give a characterization in terms of the notion of planar sets that are removable for conformal mappings. We also study the question of when a quasiconformal mapping can be factored as a 1-quasiconformal mapping precomposed with a bi-Lipschitz map.

research product

Uniformization of metric surfaces using isothermal coordinates

We establish a uniformization result for metric surfaces - metric spaces that are topological surfaces with locally finite Hausdorff 2-measure. Using the geometric definition of quasiconformality, we show that a metric surface that can be covered by quasiconformal images of Euclidean domains is quasiconformally equivalent to a Riemannian surface. To prove this, we construct suitable isothermal coordinates.

research product

Riemann surfaces and Teichmüller theory

Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen teoriaa, jota sovelletaan Möbius-kuvauksista koostuviin ryhmiin. Tämän jälkeen kvasikonformaalikuvaukset määritellään Riemannin pinnoille ja niiden yhteyttä yhdesti yhtenäisten Riemannin avaruuksien kvasikonformikuvauksiin tutkitaan. Näitä tietoja sekä yhdesti yhtenäisten Riemannin pintojen uniformisaatiolausetta hyödyntämällä todistetaan yleisten Riemannin pintojen uniformisaatiolause. Tämä tulos liittää pinnat Möbius-kuvauksien toimintoihin yhdesti yhtenäisillä Riemannin p…

research product

Abstract and concrete tangent modules on Lipschitz differentiability spaces

We construct an isometric embedding from Gigli's abstract tangent module into the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure, and give two equivalent conditions which characterize when the embedding is an isomorphism. Together with arguments from a recent article by Bate--Kangasniemi--Orponen, this equivalence is used to show that the ${\rm Lip}-{\rm lip}$ -type condition ${\rm lip} f\le C|Df|$ implies the existence of a Lipschitz differentiable structure, and moreover self-improves to ${\rm lip} f =|Df|$. We also provide a direct proof of a result by Gigli and the second author that, for a space with a strongly rectifiable decomposition, Gigli'…

research product

Quasiconformal Jordan Domains

We extend the classical Carath\'eodory extension theorem to quasiconformal Jordan domains $( Y, d_{Y} )$. We say that a metric space $( Y, d_{Y} )$ is a quasiconformal Jordan domain if the completion $\overline{Y}$ of $( Y, d_{Y} )$ has finite Hausdorff $2$-measure, the boundary $\partial Y = \overline{Y} \setminus Y$ is homeomorphic to $\mathbb{S}^{1}$, and there exists a homeomorphism $\phi \colon \mathbb{D} \rightarrow ( Y, d_{Y} )$ that is quasiconformal in the geometric sense. We show that $\phi$ has a continuous, monotone, and surjective extension $\Phi \colon \overline{ \mathbb{D} } \rightarrow \overline{ Y }$. This result is best possible in this generality. In addition, we find a n…

research product