0000000000654406
AUTHOR
K. Staliunas
Phase-bistable patterns and cavity solitons induced by spatially periodic injection into vertical-cavity surface-emitting lasers
Spatial rocking is a kind of resonant forcing able to convert a self-oscillatory system into a phase-bistable, pattern forming system, whereby the phase of the spatially averaged oscillation field locks to one of two values differing by $\ensuremath{\pi}$. We propose the spatial rocking in an experimentally relevant system---the vertical-cavity surface-emitting laser (VCSEL)---and demonstrate its feasibility through analytical and numerical tools applied to a VCSEL model. We show phase bistability, spatial patterns, such as roll patterns, domain walls, and phase (dark-ring) solitons, which could be useful for optical information storage and processing purposes.
Multiphase patterns in a degenerate nonlinear oscillator
Degenerate four-wave mixing (DFWM) oscillators are phase-bistable devices. In such systems, two equivalent states, of equal intensities but opposite phases can be generated. When the cavity Fresnel number is large, different regions of the beam transverse section can have different phases, leading to phase patterns like phase fronts (or domain walls), i.e. ID structures separating regions with opposite phase that manifest as dark lines (as the phase jumps by π across the wall), phase domains, and phase solitons, among others.
Addressing optical pixel bits in a slab of dense optical material via intrinsic optical bistability
It is well known that dense materials with local-field effects can show "intrinsic" optical bistability when they are directly irradiated by a light beam. This has been shown theoretically in a number of works and also experimentally in several cases, in gas media and also in doped solid-state materials where nonlinearities based on standard local-field effects can be reinforced with other ion interaction effects. Although from the point of view of applications nonlinearities stronger than those found so far would be desirable, the fact that no optical resonator is needed to achieve bistability makes these materials potentially interesting for applications in optical information storage and…
Experimental demonstration of phase bistability in a broad-area optical oscillator with injected signal
We demonstrate experimentally that a broad-area laserlike optical oscillator (a nondegenerate photorefractive oscillator) with structured injected signal displays two-phase patterns. The technique [de Valc\'arcel and Staliunas, Phys. Rev. Lett. 105, 054101 (2010)] consists in spatially modulating the injection, so that its phase alternates periodically between two opposite values, i.e., differing by $\ensuremath{\pi}$.