0000000000656727

AUTHOR

Jang-mei Wu

showing 4 related works from this author

Quasiregular ellipticity of open and generalized manifolds

2014

We study the existence of geometrically controlled branched covering maps from \(\mathbb R^3\) to open \(3\)-manifolds or to decomposition spaces \(\mathbb {S}^3/G\), and from \(\mathbb {S}^3/G\) to \(\mathbb {S}^3\).

Mathematics - Complex VariablesApplied Mathematics010102 general mathematicsquasiregular mappingsdecomposition spacesGeometric Topology (math.GT)Metric Geometry (math.MG)01 natural sciencesCombinatoricsMathematics - Geometric Topologysemmes metricsComputational Theory and MathematicsMathematics - Metric Geometryquasiregular ellipticity0103 physical sciencesFOS: Mathematics30C65 (Primary) 30L10 (Secondary)010307 mathematical physicsBranched covering0101 mathematicsComplex Variables (math.CV)AnalysisMathematics
researchProduct

Geometry and quasisymmetric parametrization of Semmes spaces

2014

We consider decomposition spaces R/G that are manifold factors and admit defining sequences consisting of cubes-with-handles. Metrics on R/G constructed via modular embeddings of R/G into Euclidean spaces promote the controlled topology to a controlled geometry. The quasisymmetric parametrizability of the metric space R/G×R by R for any m ≥ 0 imposes quantitative topological constraints, in terms of the circulation and the growth of the cubes-with-handles, to the defining sequences for R/G. We give a necessary condition and a sufficient condition for the existence of parametrization. The necessary condition answers negatively a question of Heinonen and Semmes on quasisymmetric parametrizabi…

General Mathematicsta111010102 general mathematicsGeometry01 natural sciencesManifoldCombinatoricsMetric space0103 physical sciencesEuclidean geometry010307 mathematical physics0101 mathematicsParametrizationTopology (chemistry)MathematicsRevista Matemática Iberoamericana
researchProduct

Quasisymmetric spheres over Jordan domains

2015

Let $\Omega$ be a planar Jordan domain. We consider double-dome-like surfaces $\Sigma$ defined by graphs of functions of $dist( \cdot ,\partial \Omega)$ over $\Omega$. The goal is to find the right conditions on the geometry of the base $\Omega$ and the growth of the height so that $\Sigma$ is a quasisphere, or quasisymmetric to $\mathbb{S}^2$. An internal uniform chord-arc condition on the constant distance sets to $\partial \Omega$, coupled with a mild growth condition on the height, gives a close-to-sharp answer. Our method also produces new examples of quasispheres in $\mathbb{R}^n$, for any $n\ge 3$.

Applied MathematicsGeneral MathematicsGraph of a functionMetric Geometry (math.MG)16. Peace & justiceOmegaCombinatoricsBase (group theory)Mathematics - Metric GeometryDomain (ring theory)FOS: MathematicsSPHERESConstant (mathematics)Mathematics
researchProduct

Geometry and quasisymmetric parametrization of Semmes spaces

2011

We consider decomposition spaces R 3 /G that are manifold factors and admit defining sequences consisting of cubes-with-handles of finite type. Metrics on R 3 /G constructed via modular embeddings of R 3 /G into a Euclidean space promote the controlled topology to a controlled geometry. The quasisymmetric parametrizability of the metric space R 3 /G×R m by R 3+m for any m ≥ 0 imposes quantitative topological constraints, in terms of the circulation and the growth of the cubes-with-handles, on the defining sequences for R 3 /G. We give a necessary condition and a sufficient condition for the existence of such a parametrization. The necessary condition answers negatively a question of Heinone…

decomposition spaceMathematics - Geometric TopologyquasispherequasisymmetryMathematics - Metric GeometryFOS: Mathematics30L10 30L05 30C65parametrizationMetric Geometry (math.MG)Geometric Topology (math.GT)
researchProduct