6533b838fe1ef96bd12a3f0c
RESEARCH PRODUCT
Quasisymmetric spheres over Jordan domains
Vyron VellisVyron VellisJang-mei Wusubject
Applied MathematicsGeneral MathematicsGraph of a functionMetric Geometry (math.MG)16. Peace & justiceOmegaCombinatoricsBase (group theory)Mathematics - Metric GeometryDomain (ring theory)FOS: MathematicsSPHERESConstant (mathematics)Mathematicsdescription
Let $\Omega$ be a planar Jordan domain. We consider double-dome-like surfaces $\Sigma$ defined by graphs of functions of $dist( \cdot ,\partial \Omega)$ over $\Omega$. The goal is to find the right conditions on the geometry of the base $\Omega$ and the growth of the height so that $\Sigma$ is a quasisphere, or quasisymmetric to $\mathbb{S}^2$. An internal uniform chord-arc condition on the constant distance sets to $\partial \Omega$, coupled with a mild growth condition on the height, gives a close-to-sharp answer. Our method also produces new examples of quasispheres in $\mathbb{R}^n$, for any $n\ge 3$.
year | journal | country | edition | language |
---|---|---|---|---|
2015-10-20 |