0000000000656944

AUTHOR

Antonio J. Pérez-pulido

0000-0003-3343-2822

CRISPR sequences are sometimes erroneously translated and can contaminate public databases with spurious proteins containing spaced repeats

© The Author(s) 2020.

research product

AnABlast: Re-searching for Protein-Coding Sequences in Genomic Regions

AnABlast is a computational tool that highlights protein-coding regions within intergenic and intronic DNA sequences which escape detection by standard gene prediction algorithms. DNA sequences with small protein-coding genes or exons, complex intron-containing genes, or degenerated DNA fragments are efficiently targeted by AnABlast. Furthermore, this algorithm is particularly useful in detecting protein-coding sequences with nonsignificant homologs to sequences in databases. AnABlast can be executed online at http://www.bioinfocabd.upo.es/anablast/ .

research product

orthoFind Facilitates the Discovery of Homologous and Orthologous Proteins

Finding homologous and orthologous protein sequences is often the first step in evolutionary studies, annotation projects, and experiments of functional complementation. Despite all currently available computational tools, there is a requirement for easy-to-use tools that provide functional information. Here, a new web application called orthoFind is presented, which allows a quick search for homologous and orthologous proteins given one or more query sequences, allowing a recurrent and exhaustive search against reference proteomes, and being able to include user databases. It addresses the protein multidomain problem, searching for homologs with the same domain architecture, and gives a si…

research product

Automated selection of homologs to track the evolutionary history of proteins

Background The selection of distant homologs of a query protein under study is a usual and useful application of protein sequence databases. Such sets of homologs are often applied to investigate the function of a protein and the degree to which experimental results can be transferred from one organism to another. In particular, a variety of databases facilitates static browsing for orthologs. However, these resources have a limited power when identifying orthologs between taxonomically distant species. In addition, in some situations, for a given query protein, it is advantageous to compare the sets of orthologs from different specific organisms: this recursive step-wise search might give …

research product