0000000000658624

AUTHOR

Seif Eddine Naffouti

3D shape recognition and matching for intelligent computer vision systems

This thesis concerns recognition and matching of 3D shapes for intelligent computer vision systems. It describes two main contributions to this domain. The first contribution is an implementation of a new shape descriptor built on the basis of the spectral geometry of the Laplace-Beltrami operator; we propose an Advanced Global Point Signature (AGPS). This descriptor exploits the intrinsic structure of the object and organizes its information in an efficient way. In addition, AGPS is extremely compact since only a few eigenpairs were necessary to obtain an accurate shape description. The second contribution is an improvement of the wave kernel signature; we propose an optimized wave kernel …

research product

Enhancement and assessment of WKS variance parameter for intelligent 3D shape recognition and matching based on MPSO

This paper presents an improved wave kernel signature (WKS) using the modified particle swarm optimization (MPSO)-based intelligent recognition and matching on 3D shapes. We select the first feature vector from WKS, which represents the 3D shape over the first energy scale. The choice of this vector is to reinforce robustness against non-rigid 3D shapes. Furthermore, an optimized WKS-based method for extracting key-points from objects is introduced. Due to its discriminative power, the associated optimized WKS values with each point remain extremely stable, which allows for efficient salient features extraction. To assert our method regarding its robustness against topological deformations,…

research product

A more distinctive representation for 3D shape descriptors using principal component analysis

Many researchers have used the Heat Kernel Signature (or HKS) for characterizing points on non-rigid three-dimensional shapes and Classical Multidimensional Scaling (Classical MDS) method in object classification which we quote, in particular, the example of Jian Sun et al. (2009) [1]. However, in this paper, the main focuses on classification that we propose a concise and provably factorial method by invoking Principal Component Analysis (PCA) as a classifier to improve the scheme of 3D shape classification. To avoid losing or disordering information after extracting features from the mesh, PCA is used instead of the Classical MDS to discriminate-as much as possible-feature points for each…

research product