0000000000660233

AUTHOR

Ralf Peter

Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations

We present a numerical study of solutions to the generalized Kadomtsev-Petviashvili equations with critical and supercritical nonlinearity for localized initial data with a single minimum and single maximum. In the cases with blow-up, we use a dynamic rescaling to identify the type of the singularity. We present a discussion of the observed blow-up scenarios.

research product

Numerical study of blow-up and dispersive shocks in solutions to generalized Korteweg–de Vries equations

Abstract We present a detailed numerical study of solutions to general Korteweg–de Vries equations with critical and supercritical nonlinearity, both in the context of dispersive shocks and blow-up. We study the stability of solitons and show that they are unstable against being radiated away and blow-up. In the L 2 critical case, the blow-up mechanism by Martel, Merle and Raphael can be numerically identified. In the limit of small dispersion, it is shown that a dispersive shock always appears before an eventual blow-up. In the latter case, always the first soliton to appear will blow up. It is shown that the same type of blow-up as for the perturbations of the soliton can be observed whic…

research product

Blow-up of the non-equivariant 2+1 dimensional wave map

It has been known for a long time that the equivariant 2+1 wave map into the 2-sphere blows up if the initial data are chosen appropriately. Here, we present numerical evidence for the stability of the blow-up phenomenon under explicit violations of equivariance.

research product