6533b82afe1ef96bd128b77c
RESEARCH PRODUCT
Numerical study of blow-up in solutions to generalized Kadomtsev-Petviashvili equations
Christian KleinRalf Petersubject
Vries equationPhysicsApplied Mathematics010102 general mathematicsMathematical analysisMathematics::Analysis of PDEsNumerical Analysis (math.NA)Type (model theory)01 natural sciencesSupercritical fluid010101 applied mathematicsNonlinear systemSingularityNonlinear Sciences::Exactly Solvable and Integrable SystemsMathematics - Analysis of PDEsFOS: MathematicsDiscrete Mathematics and CombinatoricsMathematics - Numerical Analysis0101 mathematicsNonlinear Sciences::Pattern Formation and SolitonsAnalysis of PDEs (math.AP)description
We present a numerical study of solutions to the generalized Kadomtsev-Petviashvili equations with critical and supercritical nonlinearity for localized initial data with a single minimum and single maximum. In the cases with blow-up, we use a dynamic rescaling to identify the type of the singularity. We present a discussion of the observed blow-up scenarios.
year | journal | country | edition | language |
---|---|---|---|---|
2013-10-19 |