0000000000660746
AUTHOR
Melanie Viel
Intrinsic superoxide dismutase activity of MnO nanoparticles enhances the magnetic resonance imaging contrast
Superoxide radicals are associated with the development of many severe diseases, such as cancer. Under nonpathogenic conditions, the natural enzyme superoxide dismutase (SOD) regulates the intracellular superoxide concentrations, but nearly all tumor tissues show reduced SOD levels. Selective imaging in early progression stages remains a key requirement for efficient cancer diagnosis and treatment. Magnetic resonance imaging (MRI) as a noninvasive tool with high spatial resolution may offer advantages here, but MRI contrast agents exhibiting a redox-triggered change in the image contrast towards superoxide radicals have not been reported so far. Here we show that manganese oxide (MnO) nanop…
Nanozymes in Nanofibrous Mats with Haloperoxidase-like Activity To Combat Biofouling.
Electrospun polymer mats are widely used in tissue engineering, wearable electronics, and water purification. However, in many environments, the polymer nanofibers prepared by electrospinning suffer from biofouling during long-term usage, resulting in persistent infections and device damage. Herein, we describe the fabrication of polymer mats with CeO2–x nanorods that can prevent biofouling in an aqueous environment. The embedded CeO2–x nanorods are functional mimics of natural haloperoxidases that catalyze the oxidative bromination of Br– and H2O2 to HOBr. The generated HOBr, a natural signaling molecule, disrupted the bacterial quorum sensing, a critical step in biofilm formation. The pol…