Nanodesign of new self-assembling core-shell gellan-transfersomes loading baicalin and in vivo evaluation of repair response in skin
Gellan nanohydrogel and phospholipid vesicles were combined to incorporate baicalin in new self-assembling core-shell gellan-transfersomes obtained by an easy, scalable method. The vesicles were small in size (~107 nm) and monodispersed (P.I. ≤ 0.24), forming a viscous system (~24 mPa/s) as compared to transfersomes (~1.6 mPa/s), as confirmed by rheological studies. Gellan was anchored to the bilayer domains through cholesterol, and the polymer chains were distributed onto the outer surface of the bilayer, thus forming a core-shell structure, as suggested by SAXS analyses. The optimal carrier ability of core-shell gellan-transfersomes was established by the high deposition of baicalin in th…
Optimization of Innovative Three-Dimensionally-Structured Hybrid Vesicles to Improve the Cutaneous Delivery of Clotrimazole for the Treatment of Topical Candidiasis
New three-dimensionally-structured hybrid phospholipid vesicles, able to load clotrimazole in a high amount (10 mg/mL), were obtained for the first time in this work by significantly reducing the amount of water (&le