0000000000670096
AUTHOR
Mikko Nisula
Atomic layer deposition of localised boron- and hydrogen-doped aluminium oxide using trimethyl borate as a dopant precursor
Atomic layer deposition (ALD) of boron-containing films has been mainly studied for use in 2D materials and for B-doping of Si. Furthermore, lithium-containing borates show great promise as solid electrolyte coatings for enhanced energy storage. In this work, we examine trimethyl borate (TMB) and triethyl borate (TEB) in combination with O2 plasma as precursors for ALD of B-containing films, targeting the growth of B2O3. It is found that films grown from TEB contain no boron. Further work with TMB as a boron-containing precursor showed promising initial growth on a SiO2 or Al2O3 surface, but a rapid decrease of the growth rate during subsequent ALD cycles indicating surface inhibition durin…
Atomic Layer Deposition of Localized Boron- and Hydrogen-Doped Aluminum Oxide Using Trimethyl Borate as a Dopant Precursor
Atomic layer deposition (ALD) of boron-containing films has been mainly studied for use in two-dimensional materials and for B doping of Si. Furthermore, lithium-containing borates show great promi...
Reaction pathways for atomic layer deposition with lithium hexamethyl disilazide, trimethyl phosphate, and oxygen plasma
Atomic layer deposition (ALD) of lithium-containing films is of interest for the development of next-generation energy storage devices. Lithium hexamethyl disilazide (LiHMDS) is an established precursor to grow these types of films. The LiHMDS molecule can either be used as a single-source precursor molecule for lithium or as a dual-source precursor molecule for lithium and silicon. Single-source behavior of LiHMDS is observed in the deposition process with trimethylphosphate (TMP) resulting in the deposition of crystalline lithium phosphate (Li3PO4). In contrast, LiHMDS exhibits dual-source behavior when combined with O2 plasma, resulting in a lithium silicate. Both processes were characte…