First-principles study of nitrogen doping in cubic and amorphous Ge2Sb2Te5
We investigated the structural, electronic and vibrational properties of amorphous and cubic Ge(2)Sb(2)Te(5) doped with N at 4.2 at.% by means of large scale ab initio simulations. Nitrogen can be incorporated in molecular form in both the crystalline and amorphous phases at a moderate energy cost. In contrast, insertion of N in the atomic form is very energetically costly in the crystalline phase, though it is still possible in the amorphous phase. These results support the suggestion that N segregates at the grain boundaries during the crystallization of the amorphous phase, resulting in a reduction in size of the crystalline grains and an increased crystallization temperature.