Some algebras of symmetric analytic functions and their spectra
AbstractIn the spectrum of the algebra of symmetric analytic functions of bounded type on ℓp, 1 ≤ p < +∞, and along the same lines as the general non-symmetric case, we define and study a convolution operation and give a formula for the ‘radius’ function. It is also proved that the algebra of analytic functions of bounded type on ℓ1 is isometrically isomorphic to an algebra of symmetric analytic functions on a polydisc of ℓ1. We also consider the existence of algebraic projections between algebras of symmetric polynomials and the corresponding subspace of subsymmetric polynomials.
The algebra of symmetric analytic functions on L∞
We consider the algebra of holomorphic functions on L∞ that are symmetric, i.e. that are invariant under composition of the variable with any measure-preserving bijection of [0, 1]. Its spectrum is identified with the collection of scalar sequences such that is bounded and turns to be separable. All this follows from our main result that the subalgebra of symmetric polynomials on L∞ has a natural algebraic basis.
Symmetric and finitely symmetric polynomials on the spaces ℓ∞ and L∞[0,+∞)
We consider on the space l∞ polynomials that are invariant regarding permutations of the sequence variable or regarding finite permutations. Accordingly, they are trivial or factor through c0. The analogous study, with analogous results, is carried out on L∞[0,+∞), replacing the permutations of N by measurable bijections of [0,+∞) that preserve the Lebesgue measure.
The convolution operation on the spectra of algebras of symmetric analytic functions
Abstract We show that the spectrum of the algebra of bounded symmetric analytic functions on l p , 1 ≤ p + ∞ with the symmetric convolution operation is a commutative semigroup with the cancellation law for which we discuss the existence of inverses. For p = 1 , a representation of the spectrum in terms of entire functions of exponential type is obtained which allows us to determine the invertible elements.