0000000000680637

AUTHOR

Andriy Zagorodnyuk

0000-0002-5554-4342

Some algebras of symmetric analytic functions and their spectra

AbstractIn the spectrum of the algebra of symmetric analytic functions of bounded type on ℓp, 1 ≤ p < +∞, and along the same lines as the general non-symmetric case, we define and study a convolution operation and give a formula for the ‘radius’ function. It is also proved that the algebra of analytic functions of bounded type on ℓ1 is isometrically isomorphic to an algebra of symmetric analytic functions on a polydisc of ℓ1. We also consider the existence of algebraic projections between algebras of symmetric polynomials and the corresponding subspace of subsymmetric polynomials.

research product

The algebra of symmetric analytic functions on L∞

We consider the algebra of holomorphic functions on L∞ that are symmetric, i.e. that are invariant under composition of the variable with any measure-preserving bijection of [0, 1]. Its spectrum is identified with the collection of scalar sequences such that is bounded and turns to be separable. All this follows from our main result that the subalgebra of symmetric polynomials on L∞ has a natural algebraic basis.

research product

Symmetric and finitely symmetric polynomials on the spaces ℓ∞ and L∞[0,+∞)

We consider on the space l∞ polynomials that are invariant regarding permutations of the sequence variable or regarding finite permutations. Accordingly, they are trivial or factor through c0. The analogous study, with analogous results, is carried out on L∞[0,+∞), replacing the permutations of N by measurable bijections of [0,+∞) that preserve the Lebesgue measure.

research product

The convolution operation on the spectra of algebras of symmetric analytic functions

Abstract We show that the spectrum of the algebra of bounded symmetric analytic functions on l p , 1 ≤ p + ∞ with the symmetric convolution operation is a commutative semigroup with the cancellation law for which we discuss the existence of inverses. For p = 1 , a representation of the spectrum in terms of entire functions of exponential type is obtained which allows us to determine the invertible elements.

research product

ALGEBRAS OF SYMMETRIC HOLOMORPHIC FUNCTIONS ON ${\cal L}_p$

research product