6533b82bfe1ef96bd128dede

RESEARCH PRODUCT

Some algebras of symmetric analytic functions and their spectra

Iryna ChernegaPablo GalindoAndriy Zagorodnyuk

subject

Pure mathematicsTriple systemGeneral MathematicsFreudenthal magic squareElementary symmetric polynomialStanley symmetric functionComplete homogeneous symmetric polynomialRing of symmetric functionsAlgorithmSymmetric closureMathematicsAnalytic function

description

AbstractIn the spectrum of the algebra of symmetric analytic functions of bounded type on ℓp, 1 ≤ p < +∞, and along the same lines as the general non-symmetric case, we define and study a convolution operation and give a formula for the ‘radius’ function. It is also proved that the algebra of analytic functions of bounded type on ℓ1 is isometrically isomorphic to an algebra of symmetric analytic functions on a polydisc of ℓ1. We also consider the existence of algebraic projections between algebras of symmetric polynomials and the corresponding subspace of subsymmetric polynomials.

https://doi.org/10.1017/s0013091509001655