0000000000681961
AUTHOR
P. E. Garrett
First candidates for γ vibrational bands built on the [505]11/2⁻ neutron orbital in odd-A Dy isotopes
Rotational structures have been measured using the Jurogam II and GAMMASPHERE arrays at low spin following the 155Gd(α,2n)157Dy and 148Nd(12C,5n)155Dy reactions at 25 and 65 MeV, respectively. We report high-K bands, which are conjectured to be the first candidates of a Kπ=2+γ vibrational band, built on the [505]11/2− neutron orbital, in both odd-A155,157Dy isotopes. The coupling of the first excited K=0+ states or the so-called β vibrational bands at 661 and 676 keV in 154Dy and 156Dy to the [505]11/2− orbital, to produce a Kπ=11/2− band, was not observed in both 155Dy and 157Dy, respectively. The implication of these findings on the interpretation of the first excited 0+ states in the cor…
Octupole correlations in the structure of02+bands in theN=88nuclei150Sm and152Gd
Knowledge of the exact microscopic structure of the 0${}_{1}$${}^{+}$ ground state and first excited 0${}_{2}$${}^{+}$ state in ${}^{150}$Sm is required to understand the branching of double \ensuremath{\beta} decay to these states from ${}^{150}$Nd. The detailed spectroscopy of ${}^{150}$Sm and ${}^{152}$Gd has been studied using (\ensuremath{\alpha},xn) reactions and the \ensuremath{\gamma}-ray arrays AFRODITE and JUROGAM II. Consistently strong $E$1 transitions are observed between the excited ${K}^{\ensuremath{\pi}}$ $=$ 0${}_{2}$${}^{+}$ bands and the lowest negative parity bands in both nuclei. These results are discussed in terms of the possible permanent octupole deformation in the …
Coulomb excitation of Rn-222
The nature of quadrupole and octupole collectivity in 222Rn was investigated by determining the electric-quadrupole (E2) and octupole (E3) matrix elements using subbarrier, multistep Coulomb excitation. The radioactive 222Rn beam, accelerated to 4.23 MeV/u, was provided by the HIE-ISOLDE facility at CERN. Data were collected in the Miniball γ-ray spectrometer following the bombardment of two targets, 120Sn and 60Ni. Transition E2 matrix elements within the ground-state and octupole bands were measured up to 10ℏ and the results were consistent with a constant intrinsic electric-quadrupole moment, 518(11)efm2. The values of the intrinsic electric-octupole moment for the 0+→3− and 2+→5− transi…
Testing microscopically derived descriptions of nuclear collectivity: Coulomb excitation of Mg-22
Many-body nuclear theory utilizing microscopic or chiral potentials has developed to the point that collectivity might be dealt with in an {\it ab initio} framework without the use of effective charges; for example with the proper evolution of operators, or alternatively, through the use of an appropriate and manageable subset of particle-hole excitations. We present a precise determination of $E2$ strength in $^{22}$Mg and its mirror $^{22}$Ne by Coulomb excitation, allowing for rigorous comparisons with theory. No-core symplectic shell-model calculations were performed and agree with the new $B(E2)$ values while in-medium similarity-renormalization-group calculations consistently underpre…
High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC
High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments.
First Evidence of Axial Shape Asymmetry and Configuration Coexistence in $^{74}$Zn: Suggestion for a Northern Extension of the $N=40$ Island of Inversion
International audience; The excited states of $N=44$$^{74}$Zn were investigated via $\gamma$-ray spectroscopy following $^{74}$Cu $\beta$ decay. By exploiting $\gamma$-$\gamma$ angular correlation analysis, the $2_2^+$, $3_1^+$, $0_2^+$ and $2_3^+$ states in $^{74}$Zn were firmly established. The $\gamma$-ray branching and $E2/M1$ mixing ratios for transitions de-exciting the $2_2^+$, $3_1^+$ and $2_3^+$ states were measured, allowing for the extraction of relative $B(E2)$ values. In particular, the $2_3^+ \to 0_2^+$ and $2_3^+ \to 4_1^+$ transitions were observed for the first time. The results show excellent agreement with new microscopic large-scale shell-model calculations, and are disc…
Identification of theg92proton and neutron band crossing in theN=ZnucleusSr76
High-spin states in $^{76}\mathrm{Sr}$ have been studied using Gammasphere plus Microball detector arrays. The known yrast band has been extended beyond the first band crossing, which involves the simultaneous alignment of pairs of ${\mathrm{g}}_{\frac{9}{2}}$ protons and neutrons, to a tentative spin of $24\ensuremath{\hbar}$. The data are compared with the results of cranked relativistic mean-field (CRMF) and cranked relativistic Hartree-Bogoliubov (CRHB) calculations. The properties of the band, including the ${\mathrm{g}}_{\frac{9}{2}}$ proton/neutron band crossing frequency and moments of inertia, are found to be well reproduced by the CRHB calculations. Furthermore, the unpaired CRMF …
Evolution of Octupole Deformation in Radium Nuclei from Coulomb Excitation of Radioactive Ra222 and Ra228 Beams
There is sparse direct experimental evidence that atomic nuclei can exhibit stable "pear" shapes arising from strong octupole correlations. In order to investigate the nature of octupole collectivity in radium isotopes, electric octupole (E3) matrix elements have been determined for transitions in ^{222,228}Ra nuclei using the method of sub-barrier, multistep Coulomb excitation. Beams of the radioactive radium isotopes were provided by the HIE-ISOLDE facility at CERN. The observed pattern of E3 matrix elements for different nuclear transitions is explained by describing ^{222}Ra as pear shaped with stable octupole deformation, while ^{228}Ra behaves like an octupole vibrator.
The observation of vibrating pear-shapes in radon nuclei
6 pags., 4 fig.s, 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Deformation of rotational structures inKr73andRb74: Probing the additivity principle at triaxial shapes
Lifetimes have been deduced in the intermediate/high-spin range for the three known rotational bands in $^{73}\mathrm{Kr}$ and the $T=0$ band in $^{74}\mathrm{Rb}$ using the residual Doppler shift method. This has enabled relative transition quadrupole moments to be studied for the first time in triaxial nuclei as a function of spin. The data suggest that the additivity principle for transition quadrupole moments is violated, a result that is in disagreement with predictions from cranked Nilsson-Strutinsky and cranked relativistic mean-field theory calculations. The reasons for the discrepancy are not understood but may indicate that important correlations are missing from the models.
Coulomb excitation of pear-shaped nuclei
There is a large body of evidence that atomic nuclei can undergo octupole distortion and assume the shape of a pear. This phenomenon is important for measurements of electric-dipole moments of atoms, which would indicate CP violation and hence probe physics beyond the Standard Model of particle physics. Isotopes of both radon and radium have been identified as candidates for such measurements. Here, we have observed the low-lying quantum states in 224Rn and 226Rn by accelerating beams of these radioactive nuclei. We show that radon isotopes undergo octupole vibrations but do not possess static pear-shapes in their ground states. We conclude that radon atoms provide less favourable condition…