0000000000682649
AUTHOR
Chiara Riganti
Novel Lymphocyte-Independent Antitumor Activity by PD-1 Blocking Antibody against PD-1+ Chemoresistant Lung Cancer Cells
Abstract Purpose: Antibodies against the lymphocyte PD-1 (aPD-1) receptor are cornerstone agents for advanced non–small cell lung cancer (NSCLC), based on their ability to restore the exhausted antitumor immune response. Our study reports a novel, lymphocyte-independent, therapeutic activity of aPD-1 against NSCLC, blocking the tumor-intrinsic PD-1 receptors on chemoresistant cells. Experimental Design: PD-1 in NSCLC cells was explored in vitro at baseline, including stem-like pneumospheres, and following treatment with cisplatin both at transcriptional and protein levels. PD-1 signaling and RNA sequencing were assessed. The lymphocyte-independent antitumor activity of aPD-1 was explored in…
Consensus guidelines for the detection of immunogenic cell death
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defect…
Vγ9Vδ2 T Cells as Strategic Weapons to Improve the Potency of Immune Checkpoint Blockade and Immune Interventions in Human Myeloma
The advent of immune checkpoint (ICP) blockade has introduced an unprecedented paradigm shift in the treatment of cancer. Though very promising, there is still a substantial proportion of patients who do not respond or develop resistance to ICP blockade. In vitro and in vivo models are eagerly needed to identify mechanisms to maximize the immune potency of ICP blockade and overcome primary and acquired resistance to ICP blockade. Vγ9Vδ2 T cells isolated from the bone marrow (BM) from multiple myeloma (MM) are excellent tools to investigate the mechanisms of resistance to PD-1 blockade and to decipher the network of mutual interactions between PD-1 and the immune suppressive tumor microenvir…
Vγ9Vδ2 T Cells in the Bone Marrow of Myeloma Patients: A Paradigm of Microenvironment-Induced Immune Suppression
Vγ9Vδ2 T cells are non-conventional T cells with a natural inclination to recognize and kill cancer cells. Malignant B cells, including myeloma cells, are privileged targets of Vγ9Vδ2 T cells in vitro. However, this inclination is often lost in vivo due to multiple mechanisms mediated by tumor cells and local microenvironment. Multiple myeloma (MM) is a paradigm disease in which antitumor immunity is selectively impaired at the tumor site. By interrogating the immune reactivity of bone marrow (BM) Vγ9Vδ2 T cells to phosphoantigens, we have revealed a very early and long-lasting impairment of Vγ9Vδ2 T-cell immune functions which is already detectable in monoclonal gammopathy of undetermined …