0000000000699557
AUTHOR
Minerva Catral
Spectral study of {R,s+1,k}- and {R,s+1,k,∗}-potent matrices
Abstract The { R , s + 1 , k } - and { R , s + 1 , k , ∗ } -potent matrices have been studied in several recent papers. We continue these investigations from a spectral point of view. Specifically, a spectral study of { R , s + 1 , k } -potent matrices is developed using characterizations involving an associated matrix pencil ( A , R ) . The corresponding spectral study for { R , s + 1 , k , ∗ } -potent matrices involves the pencil ( A ∗ , R ) . In order to present some properties, the relevance of the projector I − A A # where A # is the group inverse of A is highlighted. In addition, some applications and numerical examples are given, particularly involving Pauli matrices and the quaterni…
Matrices A such that A^{s+1}R = RA* with R^k = I
[EN] We study matrices A is an element of C-n x n such that A(s+1)R = RA* where R-k = I-n, and s, k are nonnegative integers with k >= 2; such matrices are called {R, s+1, k, *}-potent matrices. The s = 0 case corresponds to matrices such that A = RA* R-1 with R-k = I-n, and is studied using spectral properties of the matrix R. For s >= 1, various characterizations of the class of {R, s + 1, k, *}-potent matrices and relationships between these matrices and other classes of matrices are presented. (C) 2018 Elsevier Inc. All rights reserved.