6533b82cfe1ef96bd128f3e0

RESEARCH PRODUCT

Spectral study of {R,s+1,k}- and {R,s+1,k,∗}-potent matrices

Leila LebtahiJeffrey L. StuartMinerva CatralNéstor Thome

subject

Pauli matricesGroup (mathematics)Applied MathematicsSpectrum (functional analysis)Order (ring theory)Inverse010103 numerical & computational mathematics01 natural sciences010101 applied mathematicsCombinatoricsComputational Mathematicssymbols.namesakeMatrix pencilsymbols0101 mathematicsQuaternionPencil (mathematics)Mathematics

description

Abstract The { R , s + 1 , k } - and { R , s + 1 , k , ∗ } -potent matrices have been studied in several recent papers. We continue these investigations from a spectral point of view. Specifically, a spectral study of { R , s + 1 , k } -potent matrices is developed using characterizations involving an associated matrix pencil ( A , R ) . The corresponding spectral study for { R , s + 1 , k , ∗ } -potent matrices involves the pencil ( A ∗ , R ) . In order to present some properties, the relevance of the projector I − A A # where A # is the group inverse of A is highlighted. In addition, some applications and numerical examples are given, particularly involving Pauli matrices and the quaternions.

https://doi.org/10.1016/j.cam.2019.112414