0000000000701799

AUTHOR

S. Orrigo

Response of the XENON100 dark matter detector to nuclear recoils

Results from the nuclear recoil calibration of the XENON100 dark matter detector installed underground at the Laboratori Nazionali del Gran Sasso (LNGS), Italy are presented. Data from measurements with an external 241AmBe neutron source are compared with a detailed Monte Carlo simulation which is used to extract the energy dependent charge-yield Qy and relative scintillation efficiency Leff. A very good level of absolute spectral matching is achieved in both observable signal channels - scintillation S1 and ionization S2 - along with agreement in the 2-dimensional particle discrimination space. The results confirm the validity of the derived signal acceptance in earlier reported dark matte…

research product

First evidence of multiple β-delayed neutron emission for isotopes with a > 100

The β-delayed neutron emission probability, Pn, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which β-delayed one-neutron emission (β1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. β1n decays have been experimentally measured up to the mass A ∼ 150, plus a single measurement of 210Tl. Concerning two-neutron emitters (β2n), ∼ 300 isotopes are …

research product